
Effective Target Aware Visual Navigation for UAVs

Ciro Potena, Daniele Nardi and Alberto Pretto.

Abstract— In this paper we propose an effective vision-
based navigation method that allows a multirotor vehicle to
simultaneously reach a desired goal pose in the environment
while constantly facing a target object or landmark. Standard
techniques such as Position-Based Visual Servoing (PBVS)
and Image-Based Visual Servoing (IBVS) in some cases (e.g.,
while the multirotor is performing fast maneuvers) do not
allow to constantly maintain the line of sight with a target of
interest. Instead, we compute the optimal trajectory by solving
a non-linear optimization problem that minimizes the target re-
projection error while meeting the UAV’s dynamic constraints.
The desired trajectory is then tracked by means of a real-time
Non-linear Model Predictive Controller (NMPC): this implicitly
allows the multirotor to satisfy both the required constraints.
We successfully evaluate the proposed approach in many real
and simulated experiments, making an exhaustive comparison
with a standard approach.

I. INTRODUCTION

Vision-based control, or visual servoing (VS), of UAVs
(Unmanned Aerial Vehicles) is an active research topic with
many applications, including search & rescue, fire monitor-
ing, traffic monitoring and patrolling. More specifically, in
these tasks the multirotor is steered to its desired state by
using visual feedbacks obtained from one or more cameras.
This topic has gained even more interest in the last years,
making it possible to deal with complex vision-based tasks,
such as landing on moving platforms [1], flight through gaps
[2], object grasping [3] and target tracking [4].

What makes VS a challenging problem for multirotors
is the under-actuated dynamics of such vehicles, especially
when performing agile and fast maneuvers (i.e., with high
velocity and angular accelerations). During such kind of
maneuvers, standard visual-based controllers focus solely on
reaching the goal state without constantly taking into account
their camera configuration with respect to the perceived
environment. In other words, during the UAV flight these
systems may lose for some time the line of sight with a
target of interest, even if such target represents the final goal
of the flight. This behavior can prevent the applicability of
such controllers in activities when the re-localization of the
target of interest is not a trivial task, due to the self-motion
of the target (e.g., when tracking a specific person that moves
in the crowd), or due to sensor aliasing (e.g., when moving
toward a specific object with not unique appearance features).

This work has been supported by the European Commission under the
grant number H2020-ICT-644227-FLOURISH. Potena,Nardi and Pretto are
with the Department of Computer, Control, and Management Engineering
“Antonio Ruberti“, Sapienza University of Rome, Italy. Email: {potena,
nardi, pretto}@diag.uniroma1.it.

Fig. 1: An example of target aware visual navigation: the UAV is
following an optimal trajectory towards the target while constantly
framing the target with the camera.

In this paper, we propose an effective and robust VS
controller that allows an UAV to perform fast maneuvers
without losing the line of sight with the target of interest
during the entire duration of the flight.
VS techniques can be split into two parallel branches:
Position-Based Visual Servoing (PBVS) and Image-Based
Visual Servoing (IBVS). In PBVS, the 3D goal pose is
directly obtained from a complete 3D reconstruction of the
surrounding environment or from the 6D position of one or
more landmarks placed in it. In contrast, IBVS formulates the
problem in terms of image features locations: the goal pose
is defined by means of desired features locations in the final
image while the control law aims to minimize the features
re-projection error during the flight. Even if IBVS does
not require any full 3D estimation, it still needs the depth
of the target. It has been shown that both strategies have
their own weakness. In IBVS it is particularly challenging
to model the relation between the vehicle dynamics and
the feature projection error, especially for under-actuated
systems. Furthermore, an inaccurate estimation of the object
depth leads to instabilities. In PBVS, since the control law
is directly designed in the state-space domain, there is a
close dependence on the accuracy of the 3D environment
reconstruction or on the target pose estimation. In practice
this estimation may be very noisy, leading PBVS to be very
sensitive to initial conditions, camera calibration parameters
and image noise corruption.

Differently from the previous work, we propose a proce-
dure that decouples the planning and the control problems.
The planning task is addressed by employing a hybrid
approach. Firstly, as in PBVS, we get the goal pose as the
position and the relative orientation of the vehicle in the
environment that allows to have the desired view of the target
object.



Then, similarly to IBVS, we model the trajectory as a
non-linear constrained optimization problem with a cost
function that penalizes the target’s location error, in order
to constantly keep the target in the camera field of view.

Once a global optimal trajectory1 has been found, we
employ an NMPC framework as controller and local
planner. Making use of an efficient open-source solver, our
control framework is capable to solve an NMPC problem
in few milliseconds, allowing us to use at each time step
just the initial tuple of control inputs2 while simultaneously
re-solving the whole non-linear control problem.

We compare our method against a common PBVS ap-
proach in both simulated and real environments, getting in
all experiments cutting edge results. Additionally, we make
a preliminary assessment with respect to a state-of-the-art
Optimal Visual Servoing (OVS) technique, suggesting that
our approach can achieve comparable results.

A. Related Work

Several IBVS [4][5][6] and PBVS [7][8] approaches has
been applied to control aerial vehicles in the last decades.
In those standard solutions, the controller uses the visual
information as the main source for the target pose com-
putation, without taking into account where the target is
re-projected into the image plane along the trajectory. A
possible solution that usually mitigates such weakness is the
kinematic limitation of the multirotor in terms of roll and
pitch angles, but this penalizes the vehicle maneuverability.
To this end, Ozawa et al. [9] present an approach that takes
advantage of the rotational-dynamic of the vehicle, where
a virtual spring penalizes large rotation with respect to a
gravity aligned frame. Some recent approaches map the
target features’ dynamic into a ”virtual image-plane” used
to compensate the current roll and pitch angles, in order to
keep them close to zero [1][3][10]. Being the re-projection
error obtained from the rotation-compensated frame, it is
still possible that the target, due to significant rotations,
completely leaves the camera field of view.

In [11][12] the authors present two approaches based on
a spherical camera geometry, allowing to design the control
law as a function of the position while neglecting the angular
velocity. Being solely position-based, these kind of methods
suffer from the above discussed problems, since the system
is still vulnerable to large rotations.

Some recent approaches are based on hybrid techniques,
where image features and 3D data are fused together to
develop a more stable controller than IBVS or PBVS
alone. An example has been presented in [13], where the
outputs from IBVS and PBVS methods are fused to form
a stable Hybrid controller. Sheckells et al. [14] presented

1With an abuse of notation, as in other related work, we call here and in
the rest of the paper ”optimal trajectory” the desired trajectory the multirotor
tracks during the flight. Actually, due to the non-linear nature of the cost
function, the optimization does not always guarantee the convergence to the
optimal, global minimum.

2An NMPC provides a sequence of control inputs for a finite temporal
horizon.

an approach where the desired trajectory is obtained by
minimizing a cost function over the re-projection error. The
proposed optimization procedure leads to computational
time constraints that do not allow to constantly re-optimize
the whole path while following it, penalizing the vehicle to
obtain even more better tracking performance. Our work
builds on a part of the problem formulation given in [14],
but our solution presents significant differences: (i) the
whole problem is decoupled and split into two optimization
problems; (ii) The formulation of the target re-projection
error assumes a slightly different form, by enabling to scale
the different error components; (iii) the NMPC explicitly
takes into account two dynamic effects and the low-level
controller that runs on the UAV.
The coupling between perception and planning has also
been addressed in [2], where an UAV has to simultaneously
localize itself with respect to a gap and pass trough it. They
plan a ballistic trajectory capable to satisfy both dynamic
and perception constraints by maximizing the distance of
the vehicle with respect to the edges of the gap.

In all the above mentioned work, except for [14], there is
no guarantee that the target is constantly kept in the camera
field of view because they don’t directly take into account
the vehicle dynamics.

B. Contributions

Our method differs from previous works under two main
aspects: (i) Unlike standard VS approaches, we guarantee
to constantly maintain the target as close as possible to
the center of the camera field of view during the whole
maneuver; (ii) Making use of a global and a local planner,
we allow the multirotor to constantly stay on the optimal
path.

II. UAV DYNAMIC MODEL

In this section, we describe the vehicle dynamic model
that we exploit as a constraint in the optimal trajectory
computation.
We express a generic position vector as xZY denoting the
position of the reference frame Y expressed with respect to
the reference frame Z. Furthermore, we express a rotation
matrix from the reference system Y to the reference system
Z as RZY . For the trajectory planning and the control of the
multirotor vehicle, we make use of three main coordinate
reference systems: (i) the camera frame with C; (ii) the world
fixed inertial frame with I; (iii) the body fixed frame with
B, that is the frame attached to the Center of Gravity (CoG)
of the UAV. The UAV configuration at each time step is
formulated by the position pIB and the linear velocities vIB
of the vehicle CoG, both expressed in the inertial frame, and
the vehicle orientation qIB . More specifically, the whole state
of the vehicle is then expressed as x = {pIB , qIB , vIB}. At
each time step, we also define the tuple of control inputs
as u = {φcmd, θcmd, ψ̇cmd, Tcmd}, where the single terms
stands for, respectively, the roll, pitch and yaw rate desired
commands and the commanded thrust.



We employ a widely used dynamic model for multirotors,
where the main forces that act on the vehicle are generated
from the propellers. More specifically, each propeller gener-
ates a thrust force FT proportional to the square of the motor
rotation speed. Moreover, we take into account also two other
important effects that became relevant in case of dynamic
maneuvers, namely blade flapping and induced drag. Both
of them introduce additional forces in the x-y rotor plane
[15]. We model them into a single lumped drag coefficient
KD, as shown in [16], [17], leading to the aerodynamic force
Faero,i:

Faero,i = FT,iKdragR
I
B

T
vIB (1)

where i stands for the propeller index, Kdrag =
diag{KD,KD, 0}, FT,i is the z component of the i − th
thrust force and vIB is the vehicle’s linear velocity (in the next
equations, where there is no confusion, we will omit both
the superscripts and subscripts I and B). The final dynamic
model of the vehicle can be expressed as follows:

ṗ = v, (2.a)

v̇ =
1

m

(
R

np∑
n=0

(FT,i − Faero,i) + Fext

)
+ g, (2.b)

φ̇ =
1

τφ
(kφφcmd − φ) (2.c)

θ̇ =
1

τθ
(kθθcmd − θ) (2.d)

ψ̇ = ψ̇cmd (2.e)

where m is the mass of the vehicle, Fext are the external
forces that act on the multirotor. In our system, we make use
of a low-level controller that maps the high-level attitude
control inputs in propellers’ velocity, as the one provided
with the Asctec NEO hexacopter used in the experiments.
To achieve better tracking performance, we model this inner
control loop as first order dynamic systems, where the model
parameters τi and ki are obtained by a system identification
procedure [18].

III. OPTIMAL VISUAL SERVOING (OVS)

In this section we describe how we take into account
dynamics and perception constraints in planning a trajectory
and controlling the multirotor. The first step is the goal
pose computation, namely the position and orientation of
the vehicle that allows to get the desired view of the
target. We then split the Optimal Visual Servoing (OVS)
problem into two consecutive stages. First, we compute an
optimal global trajectory by solving a non-linear optimization
problem. In order to take into account the dynamic and
perception constraints, the output trajectory is minimized
over the multirotor dynamics and the target re-projection
error in the image plane. To track the desired trajectory we
then employ a Receding Horizon NMPC controller, where a
smaller non-linear optimization problem is solved every time

step and only the first control input is actually sent to the
multirotor.

A. Goal Pose Computation

Before computing the optimal trajectory, the multirotor
has to retrieve the goal pose it aims to reach. Such a pose
depends on the task (e.g., inspection or patrolling) and it
usually requires the vehicle to frame a target (e.g., landmark
or object) from a specific distance and with a specific point
of view. Retrieving a relative 3D transformation from the
camera is a well-known problem and has been widely studied
in the last decades. A widely used technique is based on the
solution of a Perspective-n-Point (PnP ) problem [19]: such
technique requires a prior knowledge about the target object
geometry and scale.

Since the choice of the goal pose computation algorithm
goes behind the purpose of this work, we assume for the
sake of simplicity to have a real-time ”black-box” detection
framework that outputs: (i) the (u, v) pixel coordinates of
the target T in the camera image plane; (ii) the 3D position
of the target in the camera frame pCT ; (iii) the orientation
qTC of the target object with respect to the camera frame C
in terms of yaw angle. The goal pose in world I reference
system can be then obtained as follows:

pgoal
I
B = pIB + qIB(q

B
C (d

C
T − pCT ) + pBC) (3.a)

qgoal
I
B = qIBq

B
C q

C
T (3.b)

Where dCT is the desired position of the target expressed
in the camera frame, while pBC and qBC are the extrinsic
calibration parameters between the camera frame and the
body frame.

B. Optimal Trajectory Computation

Once we have the goal pose, we need to generate a
discrete trajectory composed by N tuples of the vehicle
state vector {x0, ..., xN} and control inputs {u0, ..., uN}
that minimize the functional cost J subject to the vehicle
dynamics equations f(xk, uk) described in Sec. II. The time
step of such dynamic equations is given by tf−t0

N , where tf
and t0 are respectively the final time and the initial time,
while N is the number of steps. Additionally, the custom
choice of the time variable allows us to define also the
nominal speed snom (i.e. ∆p

tf
), namely the speed the vehicle

is expected to flight. Similarly to [14], we define the cost
function as:

J(x0:N , u0:N−1) = JN (xN ) +

N−1∑
k=0

Jk(xk, uk) (4.a)

where JN is the final cost and Jk is the cost along the
trajectory. At this point, we split Jk into two main terms.
The first one represents the cost over the desired final state
and the control effort, and it can be expressed as follow:

J ′K(xk, uk) =
1

2
(xk − xN )TQ(xk − xN ) +

1

2
uTRu (4.b)



where Q ≥ 0 and R ≥ 0 are the matrices that weight the
control objectives. In addition, in the second term of Jk we
introduce a cost that aims to penalize the re-projection error
of the target into the camera field of view. The entire cost
in the discrete time step k can be then formulated as:

JK(xk, uk) = J ′K(xk, uk) +
1

2
ei(xk)

THei(xk) (4.c)

ei(xk) = P(xk, Pi, π)− pi (4.d)

where H ≥ 0 is the penalization term over the target
re-projection error and P is a general camera projection
function. Starting from the 3D position of the object in
the camera frame Pi, the re-projection error is obtained by
the knowledge of the intrinsic calibration parameters of the
camera, denoted in Eq. 4.d as π, the extrinsic parameters
between the camera reference system C sensor and the body
frame B, and the desired position of the target object in the
image plane pi. Differently from [14], we make use of a
weighting matrix H in place of a scalar weighting factor,
allowing us to scale the different components of the re-
projection error. Ideally, we want to have an H that penalizes
mostly the error along the smaller dimension of the input
image. We set H as follows:

H =

hx 0

0 hy

 (4.e)

Let hi=x,y be the scale factor related to the smaller
dimension (di < dj), we set it as follows:

hi = hj × σ, σ =
dj
di

(4.f)

This enables the UAV to cope with different camera sensor
setups. Since we introduce in the cost function J the re-
projection error term of the target with respect to the camera
image plane, the optimal solution will implicitly allows the
vehicle to constantly face the target, maintaining it as close
as possible to the center of the image plane.

C. Optimal Control Solver

Once the optimal trajectory has been obtained, the mul-
tirotor must closely follow it. To this end we employ an
NMPC that repeatedly solves the following optimal control
problem:

min
u,x

K−1∑
k=0

(
‖xk − xf‖2Q + ‖uk − uf‖2R

)
+ ‖xK − xf‖2P (5)

subject to: xk+1 = f(xk, uk) + fext(dk)
dk+1 = dk
Umin ≤ uk ≤ Umax
x0 = xinit

where Q ≥ 0 is the weight factor over the state, R ≥ 0 is
the weight factor over the control inputs and P is the weight
factor over the final state. The controller is implemented in
a receding horizon fashion, meaning that the aforementioned

optimization problem is solved every time step over the
fixed time interval [i, i+K]. Once the optimization problem
has been solved, the optimization procedure is repeated for
the time interval [i + 1, i + K + 1] starting from the state
reached in i+1 and by using the previous solution as initial
guess. By solving this optimization procedure in real-time,
the proposed framework simultaneously provides a feed-
forward trajectory toward the desired state and a discrete
set of control inputs which will be used by the low-level
on-board controller. This means that, in practice, at the end
of each optimization procedure only the first control input
tuple is actually sent to the multirotor controller, then the
optimization procedure is repeated.

IV. SIMULATION EXPERIMENTS

We tested the proposed framework firstly in a simu-
lated environment by using the RotorS simulator [20] and
a simplified multirotor model with a front-facing camera.
The mapping between the high-level control input and the
propellers velocities is done by a low-level PD controller
that aims to resemble the low-level controller that runs on
the real multirotor. From the higher controller level point of
view, we implemented a receding horizon NMPC [21], where
the optimization problem is solved by means of the efficient
ACADO solver [22]. To demonstrate the effectiveness of the
proposed method, we fix the number of segments N and then
flew the virtual vehicle to the desired goal pose by using
the approach described in section III and a standard PBVS
technique. The latter adopts a linear interpolation technique
between the starting and the goal poses obtaining a vector
of N intermediate poses. Such interpolated poses are then
sent to the same NMPC that computes the trajectory to track
them. Once the final time tf has been fixed, by tuning N it is
possible to act on the flight behavior: increasing the number
of segments will involve smoother trajectories and control
inputs, since the delta-pose between two adjacent desired
states segments is smaller. On the other hand, increasing N
also brings to higher computational cost when performing
the optimal trajectory computation. We used N = 55 as
trade-off between smoothness and computational velocity.

The goal pose is computed for each run employing an
April Marker [23] attached on a virtual building. Since we
aim to test our approach with different levels of aggressive
maneuvers, we act on the Snom parameter (i.e. changing the
final time tf ). In all the experiments we set the initial state
to x = {8,−12, 14, 0, 0, 1.918, 0, 0, 0}. Since the target is
always kept in the same location inside the virtual environ-
ment, the computed goal state is x = {6+wx, 2+wy, 9.4+
wz, 0, 0, 1.57+wyaw, 0, 0, 0}, where w ∈ R4 is a small white
noise random component due to the target detection errors.
The relative transformation between the initial and the final
pose forces the multirotor to retrieve an optimal trajectory
along the 4 principal motion directions of the vehicle.

A. Results

Quantitative image error trajectories for the OVS and
PBVS methods for various values of tf are reported in



4

6

8

−12−10−8−6−4−2024

8

9

10

11

12

13

14

15

X(m)
Y(m)

PBVS Quadrotor Trajectory

Z
(m

)

Fig. 2: Example of trajectories obtained using PBVS(a) and NMPC OVS (b) with snom = 3.10m
s

: the latter constantly takes into account
the target pose during the flight.

TABLE I: Comparison of simulated image error trajectory statistics for each method across different nominal speeds3.

Avg. Pixel Error Max. pixel error

tf Snom NMPC OVS PBVS Sheckells et al.[14]3 NMPC OVS PBVS Sheckells et al.[14]3

10.2 2.01 32.5 89.2 ∼63.8 55.05 145.36 ∼127.6

7.5 2.73 45.03 109.4 ∼85.3 76.91 199.21 ∼195.1

6.6 3.10 55.2 125.2 ∼90.7 98.76 223.67 ∼207.9

5.1 4.02 62.5 146.9 not available 115.64 323.78 not available

TABLE II: Comparison in terms of control effort between a standard PBVS approach and the proposed one.

RMS Thrust (g) RMS Roll Ref. (deg) RMS Pitch Ref. (deg) RMS Yaw Rate (rad/s)

tf Snom NMPC OVS PBVS NMPC OVS PBVS NMPC OVS PBVS NMPC OVS PBVS

10.2 2.01 10.8 10.56 0.15 0.11 0.08 0.075 0.34 0.33

7.5 2.73 10.95 10.79 0.31 0.25 0.33 0.29 0.43 0.46

6.6 3.10 11.21 10.98 0.5 0.43 1.47 0.38 0.49 0.48

5.1 4.02 11.54 11.13 0.9 0.75 1.82 0.69 0.61 0.60

in Table I. The reported results are obtained averaging the
performance of PBVS and OVS given the same goal pose
and starting from the same initial state for multiple trials.
As a preliminary assessment, we also reported some results
from the experiments in Sheckells et al. [14], showing that
our method can provide results comparable with this state-of-
the-art approach. It is important to highlight that, given this
data, a direct comparison with [14] is not possible, since the
pixel error statistics are strictly correlated with the simulation
setup which has not been released by the authors.

Remarkably, the target error trajectory along both image
axes is almost always lower than both the other approaches.
In spite of this, from a qualitative point of view (see Fig.
3), the PBVS trajectory seems to behave better in term of
pixel errors at same points. The explanation for such behavior
comes from the different shape of the two trajectories. In
our case, the vehicle is steered to avoid the target to leave
the center of the camera field of view, preferring a constant
and possibly small error. In the PBVS case, the trajectory is
straightforward, involving bigger errors in the acceleration
and deceleration phases, worst average and maximum er-
rors, but sporadically smaller error compared with the OVS

approach.

Fig. 3: Comparison of simulated PBVS and NMPC OVS pixel
error trajectories for snom = 3.10m

s
. Respectively error on the x-

axis of the image plane in the left image, while in the right one the
pixel error on the y-axis.

From the control inputs point of view, the reduced pixel
error comes with an energy effort trade-off: as reported in
Table II, the RMS thrust of each OVS trajectory is larger
with respect to the corresponding PBVS trajectory. Similar
conclusion can be drawn from the attitude points of view
since maintaining the target in the center of the camera

3We emphasize that the statistics from [14] have been obtained with
a different simulation setup, so they represent an indicative performance
measure.



Fig. 4: Comparison of simulated NMPC OVS pixel error trajecto-
ries for different values of snom. Respectively error on the x-axis
of the image plane in the left image, while in the right one the pixel
error on the y-axis.

Fig. 5: The Asctec NEO hexacopter used for the real experiments.

involves larger angles and yaw rate commands. The choice of
the correct behavior depends on the task requirements and, by
acting on the optimization parameters Qk, Rk and Hk, it is
possible to obtain the desired trade-off between control effort
and image error. Two samples of the trajectories generated
by the approaches are depicted in Fig. 2. Often the bigger
pixel error terms in a VS scenario occur in the initial and
in the final phase, due to the attitude components required
to accelerate and decelerate the vehicle. As qualitatively
reported in Fig. 2, the OVS trajectory takes into account these
two error sources by a small ascending phase at the same
time as the forward pitch command. Similarly the trajectory
dips softly at the end of the flight so that the target remains
in the center of the image plane when the multirotor has to
pitch backward in order to decelerate. From the PBVS point
of view, the trajectory is more or less a straight line. The
vehicle starts suddenly to pitch and to decrease its altitude,
involving a bigger pixel error.

V. REAL EXPERIMENTS

We tested the proposed framework on an Asctec NEO
hexacopter Fig. 5 equipped with an Intel NUC i7, where
we implemented our algorithm in ROS (Robotic Operating
system), running on Ubuntu 14.04. The overall weight of
the vehicle is 2.8 Kg. For the state estimation we make
use of a forward-looking VI-Sensor [24] and the ROVIO
(Robust Visual Inertial Odometry) framework [25]. The
ROVIO output is then fused together with the vehicle Inertial
Measurement Unit (IMU) by using an Extended Kalman
Filter (EKF) as described in Lynen et al. [26]. The control
inputs obtained at each time step by our approach are then
sent to the low-level on-board controller by using the UART
connection.

We executed several experiments acting on the snom
parameter. In each run the multicopter starts from the same
initial state before starting to look for the fixed target. The
distance between the vehicle and the target is approxima-
tively 8 m, and the environment is an indoor closed building.
TABLE III: Comparison of image error for each method
across different nominal speeds.

Avg. Pixel Error

tf Snom NMPC OVS PBVS

6 1.79 62.89 77.2

5 2.11 88.03 112.4

4 2.73 104.17 146.7

3 3.21 123.8 179.2

A. Results

Qualitative results for trajectories with different values
of snom are reported in Fig. 6, while table III reports the
average error statistics between OVS and PBVS. Apart from
the same error behavior that also appears in the simulation
experiments, it is possible to note how the Mean Squared
Error (MSE) pixel error for the OVS approach is lower than
the PBVS approach. The difference in terms of pixel MSE
is bigger in the initial and final phases where the PBVS, in
order to accelerate and slow down, is subject to the greatest
kinematic movements in terms of roll and pitch angles. Is
also useful to highlights how both OVS and PBVS use a
noisy target detection approach. In practice, the multirotor
is not able to obtain an accurate 3D position of the target
object in the environment. This accounts for a constant non-
zero pixel MSE, even when the vehicle reach the goal state.

Fig. 6: Comparison of real PBVS and NMPC OVS Mean Squared
Error (MSE) pixel trajectories for different values of snom. Re-
spectively the MSE for snom = 2.07 in the left image, while in
the right the MSE for snom = 3.1.

VI. CONCLUSIONS

In this work we proposed a novel OVS approach for
multirotor vehicles, particularly suitable for agile maneuvers.
The method splits the VS into two different optimization
problems. In the first one an image-based cost function
is minimized in order to find the best trajectory for the
vehicle. The optimal trajectory is then tracked by means
of an NMPC controller that runs in real-time. It has been
shown in simulated and real-world experiments how the
proposed approach achieves better performance in terms of



target re-projection error when compared to a standard PBVS
approach. In both scenarios it is capable to keep the target
object as close as possible to the center of the camera field
of view, even when performing fast maneuvers.

As a future work, we will investigate the possibility to
iteratively recompute the optimal trajectory to follow, in
order to cope also with the case of a moving target and
eventually take into account obstacles in the surrounding
environment.

REFERENCES

[1] D. Lee, T. Ryan, and H. J. Kim, “Autonomous landing of a VTOL UAV
on a moving platform using image-based visual servoing.” in Proc.
of the IEEE International Conference on Robotics and Automation
(ICRA), 2012.

[2] D. Falanga, M. Mueggler, E. Faessler, and D. Scaramuzza, “Aggres-
sive quadrotor flight through narrow gaps with onboard sensing and
computing using active vision,” in Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2017.

[3] J. Thomas, G. Loianno, K. Sreenath, and V. Kumar, “Toward Image
Based Visual Servoing for Aerial Grasping and Perching,” in Proc.
of the IEEE International Conference on Robotics and Automation
(ICRA), 2014.

[4] J. Pestana, J. L. Sanchez-Lopez, S. Saripalli, and P. C. Cervera, “Com-
puter vision based general object following for gps-denied multirotor
unmanned vehicles.” in Proc. of the American Control Conference
(ACC), 2014.

[5] T. Hamel and R. Mahony, “Visual servoing of an under-actuated
dynamic rigid-body system: an image-based approach,” IEEE Trans-
actions on Robotics and Automation, vol. 18, no. 2, pp. 187–198.

[6] N. Guenard, T. Hamel, and R. E. Mahony, “A practical visual
servo control for a unmanned aerial vehicle.” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2007.

[7] E. Altug, J. P. Ostrowski, and R. Mahony, “Control of a quadrotor
helicopter using visual feedback,” in Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation, 2002.

[8] L. Mejias, S. Saripalli, P. Campoy, and G. S. Sukhatme, “Visual
servoing of an autonomous helicopter in urban areas using feature
tracking,” Journal of Field Robotics, vol. 23, no. 3-4, pp. 185–199,
2006.

[9] R. Ozawa and F. Chaumette, “Dynamic visual servoing with image
moments for a quadrotor using a virtual spring approach,” in Proc.
of the IEEE International Conference on Robotics and Automation
(ICRA), 2011.

[10] H. B. H. Jabbari, G. Oriolo, “Output feedback image-based visual
servoing control of an underactuated unmanned aerial vehicle,” in
Proceedings of the Institution of Mechanical Engineers, Part I: Journal
of Systems and Control Engineering, 2014.

[11] O. Bourquardez, R. E. Mahony, N. Guenard, F. Chaumette, T. Hamel,
and L. Eck, “Image-based visual servo control of the translation
kinematics of a quadrotor aerial vehicle,” IEEE Trans. Robotics,
vol. 25, no. 3, pp. 743–749, 2009.

[12] R. Mebarki, V. Lippiello, and B. Siciliano, “Autonomous landing of
rotary-wing aerial vehicles by image-based visual servoing in gps-
denied environments,” in Proc. of IEEE International Symposium on
Safety, Security, and Rescue Robotics, SSRR, 2015.

[13] A. H. A. Hafez, E. Cervera, and C. V. Jawahar, “Hybrid visual
servoing by boosting ibvs and pbvs,” in Proc. of the 3rd International
Conference on Information and Communication Technologies: From
Theory to Applications, 2008.

[14] M. Sheckells, G. Garimella, and M. Kobilarov, “Optimal visual
servoing for differentially flat underactuated systems,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016.

[15] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Mod-
eling, estimation, and control of quadrotor,” IEEE Robotics Automation
Magazine, vol. 19, no. 3, pp. 20–32, 2012.

[16] S. Omari, M. D. Hua, G. Ducard, and T. Hamel, “Nonlinear control
of VTOL UAVs incorporating flapping dynamics,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013.

[17] M. Burri, J. Nikolic, C. Hrzeler, G. Caprari, and R. Siegwart, “Aerial
service robots for visual inspection of thermal power plant boiler
systems,” in Proc. of the 2nd International Conference on Applied
Robotics for the Power Industry (CARPI), 2012.

[18] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear MPC
for trajectory tracking applied to rotary wing micro aerial vehicles,”
arXiv:1611.09240, 2016.

[19] T. Petersen, “A comparison of 2D-3D pose estimation methods,”
Aalborg University, Aalborgb, 2008.

[20] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operat-
ing System (ROS): The Complete Reference (Volume 1), 2016, ch.
RotorS—A Modular Gazebo MAV Simulator Framework, pp. 595–
625.

[21] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control
for unified trajectory optimization and tracking,” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2016.

[22] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, pp. 298–312,
2011.

[23] E. Olson, “AprilTag: A robust and flexible visual fiducial system,”
in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2011.

[24] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale,
and R. Siegwart, “A synchronized visual-inertial sensor system with
fpga pre-processing for accurate real-time slam,” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2014.

[25] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct EKF-based approach,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015.

[26] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A robust
and modular multi-sensor fusion approach applied to mav navigation,”
in Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013.


