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Abstract— In air-ground multi-robots applications, where
both Unmanned Aerial Vehicles (UAVs) and Unmanned Ground
Vehicles (UGVs) operate in a coordinate way, the ability to
obtain a unified environment representation of the target area
is an essential requirement. However, a global registration of
heterogeneous ground and aerial maps is a challenging task,
especially for agricultural scenarios: the visual appearance of
such kind of environment is rather homogeneous, it is difficult
to find and exploit distinctive 3D geometrical structures, while
the maps built using robots of different types show differences
in both size and resolution and, possibly, scale errors.
In this paper, we tackle the cooperative UAV-UGV environment
modeling problem in farming scenarios. We propose a novel
maps registration pipeline that leverages a digital multi-modal
environment representation which includes a vegetation index
map and a Digital Surface Model (DSM). Using such map
representation, we cast the data association problem between
maps built from UAVs and UGVs as a multi-modal, large
displacement dense optical flow estimation. The data association
is then used to estimate an initial, non-rigid alignment between
the maps that also compensates the (directional) scale discrep-
ancies between them. A final refinement is then performed, by
exploiting only meaningful parts of the registered maps.
We compare our method with standard registration techniques
showing better alignment performances and better generaliza-
tion properties over different misalignments and scale errors.

I. INTRODUCTION

The cooperation between aerial and ground robots offers
undoubted advantages to many applications, thanks to
the complementarity of characteristics and functionalities
provided by these robots [17]. For instance, a UGV can
carry high payloads, can perform targeted actions on the
environment and it can operate for long periods of time,
while a UAV allows rapid surveying and inspection of
large areas [18], and can share information about areas of
interest with the UGV. Air-ground cooperation is especially
useful in Precision Agriculture scenarios, where the areas
of interest are usually very large: a UAV can perform an
initial survey of the field to localize areas where to deploy
one ore more UGVs for detailed inspections or targeted
interventions. Moreover, if both robots share the same
environment representation, it becomes possible to update
it with more detailed/high resolution map portions, or with
semantic information coming from the processing of detailed
views of the terrain [22]. On the other hand, building maps

This work was supported by the EC under Grant H2020-ICT-
644227-Flourish. 1Potena, Nardi and Pretto are with the Department
of Computer, Control, and Management Engineering “Antonio Ru-
berti“, Sapienza University of Rome, Italy. Email: {potena, nardi,
pretto}@diag.uniroma1.it. 2Khanna and Nieto are with the
Autonomous Systems Lab, ETH Zurich. Email: jnieto@ethz.ch,
raghav.khanna@mavt.ethz.ch

Fig. 1: We assume that both a UGV and a UAV can generate a colored point
cloud of the cultivated field (left). The proposed method aims to accurately
merge these maps by means of an affine transformation that registers the
UGV submap into the UAV aerial map (right), taking into account also the
possible scale discrepancies.

using both these robots presents several challenges. UGVs
and UAVs usually perceive the environment from very
different points-of-views, while the agricultural fields are
rather homogeneous both in the visual and in the geometric
appearances. Geolocation information provided by reference
sensors such as GPSs and Attitude and Heading Reference
Systems (AHRSs) are often affected by not negligible
errors [15], and cannot be directly exploited to solve sensor
fusion problems. All those issues make standard multi-robot
localization and mapping pipelines often ineffective. For
similar reasons, combining 3D environment reconstructions
(e.g., Fig. 1 (left)), independently built by aerial and ground
robots1, is a rather complex task as well. Maps can be
affected by missing data and global deformations and, due
to the reference sensors inaccuracies, also geotagged maps
are often affected by global location and orientation biases.

In this paper, we provide an effective solution for the coop-
erative mapping task for heterogeneous robots, by proposing
a 3D map registration pipeline specifically designed for
farming scenarios. We assume that both a UAV and a UGV
can generate a colored, geotagged point cloud of a target
farm environment (Fig. 1). Our first solution is to tackle
the data association problem between maps by means of a
dense, globally regularized matching approach. We leverage
on the intuition that points belonging to a cloud locally share
similar displacement vectors that associate such points with
points in the other cloud. Thus, by introducing a smoothness2

term in the dense, regularized matching, we penalize the

1Maps are built, for instance, using sequences of geotagged images.
2The smoothness is related to the matching parameters of neighboring

elements.



Fig. 2: Pictures of the same portion of field seen from the UAV point-
of-view (left) and from the UGV point-of-view (right). The local crop
arrangement geometry, such as the missing crop plants, is generally not
visible from the UGV point-of-view. The yellow solid lines represent an
example of manually annotated correct point matches. It is important to
underline the complexity required in obtaining correct data association, also
from an human point-of-view. The fiducial markers on the filed have been
used to compute the ground truth alignments between maps.

displacement discontinuities in the neighborhood of each
point. This approach has been inspired by the Large diplace-
ment Dense Optical Flow (LDOF) problem in computer
vision and, to this end, we convert the colored point clouds
into a more suited, multi-modal environment representation
that allows to exploit two-dimensional approaches and to
enhance both the semantic and the geometrical properties
of the target map. Our map is devised as a grid, where
each cell stores (i) the Excess Green index (ExG) and,
as a DSM, (ii) the local surface height information (e.g.,
the height of the plants, soil, etc.). We then use the data
provided by the GPS and the AHRS to extract an initial guess
of the relative displacement and rotation between matched
grid maps. Hence, we compute a dense set of point-to-
point correspondences between matched maps, exploiting a
modified version of a state-of-the-art LDOF system [14]. We
tailored this algorithm to our environment representation by
proposing a different cost function that involves both the
ExG information and the local structure geometry around
each cell. We extract the largest set of similar flows, to be
used as point-to-point correspondences to infer a preliminary
alignment transformation between the maps. In order to deal
with directional scale errors, we use a non-rigid point-set
registration algorithm to estimate an affine transformation.
The final registration is obtained by running a robust point-
to-point registration algorithm over the input point clouds,
pruned from all points that do not belong to vegetation. An
overview of the the proposed approach is reported in Fig. 3.
We report a set of preliminary experiments (Sec. V) on data
acquired by a UAV and a UGV on a real field in Eschikon,
Switzerland. We show that the proposed approach is able
to guarantee correct registrations for an initial translational
error up to 4 meters, an initial heading misalignment up to
11.5 degrees, and a directional scale error of up to 20%.
We also report a comparison with state-of-the-art point-
to-point registration algorithms, showing that our approach
outperforms them in all the experiments.

A. Related Work

The field of multi map registration is a recurrent and
relatively relevant problem in literature, and several solutions
have been presented, in both 2D ([1], [2], [24]) and 3D ([10],
[16]) settings. Registration of point cloud based maps can
also be considered as an instance of the more general point

set registration problem [4], [8]. The map registration prob-
lem is even more difficult when dealing with heterogeneous
robots, where the 3D data is gathered from different points-
of-views and with different noise characteristics. Michael et
al. [20] propose a collaborative UAV-UGV 2.5D mapping
approach. A UGV, equipped with a LiDAR, builds an initial
map of the environment. The scans are merged together by
employing an ICP approach using a flat ground assumption.
The UAV, equipped with a 2D LiDAR, is deployed only
in specific locations and maps the environment by using a
pose-graph Simultaneous Localization and Mapping (SLAM)
algorithm. The maps are then fused together using an ICP
algorithm that is initialized in the UAV starting location.
In [9], Forster et al. fuse RGB-D data from the UGV
and dense monocular reconstructions from the UAV. The
registration is performed by using the global orientation
provided by an IMU and a magnetometer, while for the x
and y coordinates they employ a 2D local height map fitting
procedure. Hinzmann et al. [12] deal with registering 3D
LiDAR point clouds with sparse point clouds, by exploiting
an initial guess provided by a GPS and different ICP variants.
In [11], Gawel et al. present a global registration procedure
for 3D LiDAR maps gathered by a UGV with visual feature
maps acquired by a UAV. The proposed approach exploits the
rough geometric structure of the environment and an attitude
initial guess provided by an IMU. Zeng et al. [27] deal
with the heterogeneous map-merging problem by matching
a learnt descriptor. In [6], Dub et al. exploit line features
instead of standard ones, showing better global localization
performance. However, the proposed approach has been
tested only with UGVs equipped with the same sensor
setup. In summary, despite extensive literature addressing the
problem of 3D map-merging for heterogeneous robots, all
proposed methods make strong context-based assumptions.
Localization and mapping in an agricultural scenario is a

topic that is recently gathering great attention in the robotics
community: Weiss et al. [25] discuss the use of MEMS
based 3D LiDAR sensors for plant detection and mapping in
contrast to traditional vision-based approaches; English et al.
[7] proposed a vision based crop-row detection and following
system; in [15], we proposed a multi-cue positioning and
mapping system for a UGV moving in a cultivated field.
Most of these systems, however, deal with a single robot,
and the problem of fusing maps built from multiple robots
is usually not adequately addressed.
Registering 3D maps in an agricultural environment, in some
respects, is even more difficult than in other environments:
the environment is homogeneous, poorly structured and it
usually gives rise to strong sensor aliasing. For these reasons,
the standard approaches mentioned above cannot directly be
applied in practice.

A relevant work that deals with some of the challenges
mentioned above has been proposed by Dong et al. [5]. They
address the problem of matching images from the same field
across time, by using a SLAM system to fuse measurements
gathered by heterogeneous sensors such as cameras, GPSs,
and an IMUs. This data is also used to reject outliers in



Fig. 3: Overview of the the proposed approach. Starting from the left side, we show: (i) the input colored point clouds gathered by the UAV and UGV,
respectively, where in the UAV map we highlight through a dashed circle the initial search area given by the GPS prior; (ii) the obtained multi-modal grid
maps that, for visualization purposes, we report as colored images; (iii) the output from the LDOF system: we represent with green solid lines the inliers,
while the remaining solid lines are outliers; (iv) the selected data associations; (v) the aligned point clouds according to the initial affine transform (for
visualization purposes, we colored in blue and red the UGV and UAV point clouds, respectively); (vi) the final registration result after the refinement step.

the data association process, resulting in a higher overall
robustness. On the other hand, since the data association
is mainly handled by standard visual features, the proposed
algorithm cannot manage the drastic viewpoint change when
matching aerial and ground maps. A similar problem has
been tackled by Chebrolu et al. [3]. In this paper, the authors
deal with the image registration from a nadir aerial point-of-
view by exploiting the almost static geometry of the crop
arrangement in the field. The idea is to use a scale invariant
feature descriptor that encodes the local plant arrangement
geometry. The results show that the data association obtained
with the proposed descriptor allows to successfully register
images taken over time. Unfortunately, data from UAV and
UGV are acquired from very different points-of-views, so the
local crop geometry may be lost in one of the two views:
this fact may prevent a direct application of this method.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Given two maps of a farmland MA and MG (Fig. 3,
first column), both represented by 3D colored point clouds
and built from data gathered from a UAV and a UGV,
respectively, our goal is to find a transformation F :R3→R3

that allows to accurately align them. MA and MG can
be generated, for instance, by means of image-based 3D
reconstruction techniques applied to a sequence of geotagged
images of a field acquired by the two robots. Our method
makes the following assumptions about the two maps:

1) They can have different spatial resolutions but they
refer to the same field, with some overlap among them;

2) They were built in the same time slot;
3) They are approximately geotagged, possibly with noisy

locations and orientations;
4) They can be affected by local inconsistencies, missing

data, and deformations such as directional scale errors.
The last hypothesis implies the violation of the rigid-body

transformation assumption between the two maps: for this
reason, we represent F as an affine transformation that allows
anisotropic (i.e., non-uniform) scaling between the maps.
Since we cannot recover the ground-truth scale factor of the
reconstructed field, we assume that MA is not affected by
any scale inconsistencies, so we look for a transformation

that aligns MG with MA by correcting the scale errors
of MG with respect to MA. The latter is an acceptable
assumption, since the map created by the UAV is usually
larger than MG, and generated by using less noisy GPS
readings, so the scale drift effect tends to be canceled.

III. DATA ASSOCIATION

In order to estimate the transformation F that aligns the
two maps, we need to find a set of point correspondences, i.e.
a set of matches mA,G = {(p,q) : p∈MA,q∈MG} between
MA andMG, that represent points pairs that roughly belong
to the same 3D position. As introduced before, conventional
matching methods based on sparse matching of local fea-
tures are unlikely to provide effective results due to the
amount of repetitive and non-distinctive patterns spread in
an agricultural environment. Instead, our method addresses
the data association problem with a dense approach, inspired
by the fact that points that are close to each other in MA
should be matched with points close to each other in MG.
This problem reminds the dense optical flow problem for
RGB images: in this context, global methods (e.g., [13]) aim
to build correspondences pixel by pixel between a pair of
images by minimizing a cost function that, for each pixel,
involves a data term that measures the point-wise similarity
and a regularization term that fosters smoothness between
nearby flows (i.e., nearby pixel to pixel associations).

A. Multi-Modal Grid Map

We aim to estimate mA,G by computing a ”dense flow“
that associates points in MA with points in MB. Obviously,
methods designed for RGB images are not directly applicable
to colored point clouds: we introduce here a multi-modal
environment representation that allows to exploit such meth-
ods while enhancing both the semantic and the geometrical
properties of the target map. A cultivated field is basically a
globally flat surface populated by plants. A DSM3 can well
approximate the field structure geometry, while a vegetation
index can highlight the meaningful parts of the field and the
visual relevant patterns: in our environment representation,

3A DSM is a raster representations (i.e., a rectangular grid) of the height
of the objects on a surface.



we exploit both these intuitions. We generate a DSM from
the point cloud; for each cell of the DSM grid, we also
provide an ExG index. The ExG index enhances the green
color channel in RGB images to highlight the presence of the
vegetation. In practice, we transform a colored point cloud
M into a two dimensional grid map J : R2 → R2 (Fig. 3,
second column), where for each cell we provide the surface
height and the ExG index, with the following procedure:

1) We select a rectangle that bounds the target area by
means of minimum-maximum latitude and longitude;

2) The selected area is discretized into a grid map J of
w× h cells, by using a step of s meters. In practice,
each of the w× h cells represents a square of s× s
meters. Each cell is initialized with (0,0) pairs.

3) Remembering that M is geotagged (see Sec. II), we
can associate each 3D point of M to one cell of J .

4) For each cell with associated at least one 3D point:
(a) We compute the height as the average of the z
coordinates of the 3D points that belong to such cell;
(b) we compute the the ExG index as the average of
the the ExG indexes of the 3D points that belong to
such cell, where for each point p we have:

ExG(p) = 2pg− pr− pb; (1)

with pr, pg and pb the RGB components of the point.

B. Multi-Modal Large diplacement Dense Optical Flow

We transform both the MA and MG point clouds to be
aligned into the corresponding multi-modal grid represen-
tations JA and JG, as described in the previous section.
In the ideal case, with perfect geotags, each cell of JG is
already in the correct position, and could be associated with
the corresponding cell of JA that share the same coordinates.
In other words, in the ideal case the ”flow“ that associates
cells between the two maps is zero. Unfortunately in the real
case, due to the inaccuracies of both the geotags and the 3D
reconstruction, a non zero, potentially large offset is intro-
duced in the associations. This offset is locally consistent
but not constant for each cell, due to the directional scale
errors. To estimate the offset map, we employ a modified
version of the Coarse-to-fine PatchMatch (CPM) framework
described in [14]. CPM is a recent LDOF system that
provides cutting edge estimation results also in presence of
very large displacements, and it is more efficient than other
state-of-the-art methods with similar accuracy.
For efficiency issues, CPM looks for the best correspondence
of some seeds rather than every pixel: the seeds are a set of
points regularly distributed whithin the image. Given two
images I0,I1 ∈ R2 and a collection of seeds S = {sn} at
position {p(sn)}, the goal of this framework is to determine
the flow of each seed f (sn) = M(p(sn))− p(sn) ∈R2, where
M(p(sn)) is the corresponding matching position in I1 for
the seed sn in I0. The flow computation for each seed is
performed by a coarse-to-fine random search strategy by
minimizing the cost function:

f (sn) = argmax
fsi

(C( f (si))),si ∈ {sm} (2)

where C( f (si)) denotes the match cost between the patch
centered at p(sm) in I0 and the patch centered in p(sm)+ f (·)
in I1. For a comprehensive description of the flow estimation
pipeline, we refer the reader to [14].

Our goal is to use the CPM algorithm to compute the
flow between JA and JG. To exploit the full information
provided by our grid maps (see Sec. III-A), we modified the
CPM matching cost in order to take into account both the
height and ExG channels. We split the cost function in two
terms:

C( f (si)) = α ·CSIFT ( f (si))+β ·CFPFH( f (si)) (3)

CSIFT ( f (si)) is the SIFT [19] based match cost as in the
original CPM algorithm: in our case the SIFT descriptors
have been computed from the ExG channel of JA and
JG. CFPFH( f (si)) is a match cost computed using the
height channel. We chose the Fast Point Feature Histograms
(FPFH) [23] descriptor for this second term: the FPFH
descriptors are robust multi-dimensional features which de-
scribe the local geometry of a point cloud, in our case they
are computed from the organized point cloud4 generated
from the height channel of JA and JG. The parameters α

and β are the weighting factors of the two terms. As in [14],
the patch-based matching cost is chosen to be the sum of
the absolute difference over all the 128 and 32 dimensions
of the SIFT and FPFH flows, respectively, at the matching
points. With the proposed cost function, we take into account
both the visual appearance and the local 3D structure of the
plants.
Once we have computed the dense flow between JA and JG
(Fig. 3, third column), we extract the largest set of similar
flows up to a distance threshold t f ; these flows define a set
of point-to-point matches mA,G that will be used to infer a
preliminary alignment (Fig. 3, fourth column).

IV. NON-RIGID REGISTRATION

The estimation of the non-rigid transformation between
the clouds is addressed in two steps. A preliminary affine
transformation F̂ is computed by solving a non-rigid regis-
tration problem with known point-to-point correspondences.
We extract two organized point clouds from JA and JG and,
using the matches mA,G computed in Sec. III-B, we compute
F̂ by solving an optimization problem with cost function the
sum of the squared distances between corresponding points
(Fig. 3, fifth column). To estimate the final registration, we
firstly select from the input colored point clouds MA and
MG two subsets, Mveg

A and Mveg
G , that includes only points

that belong to vegetation. The selection is performed by using
an ExG based thresholding operator over MA and MG.
This operation enhances the morphological information of
the vegetation, while reducing the size of the point clouds to
be registered. We finally estimate the target affine transfor-
mation F by exploiting the Coherent Point Drift (CPD) [21]
point set registration algorithm over the point clouds Mveg

A
and Mveg

G , using F̂ as initial guess transformation.

4An organized point cloud is a cloud that reminds a matrix like structure.
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Fig. 4: Average success registration rate curves for different initial transformations between the clouds Row A, Row B and Row C, and the cloud built
by the UAV (Soybean Field). The initial scale error incrementally increases from the left to the right column with percentages of 0%,10%,20%,25%,
respectively. In the first row, the x axis reports the increasing translational error, for fixed rotational and scale errors. In the second row, the x axis reports
the increasing rotational error, for fixed translational and scale errors. It is important to point out that the success registration rate of the Go-ICP method
is only reported for the cases without an initial scale error (first column) since this approach only deals with rigid transformations.

TABLE I: This table reports the average accuracy among all the successful registrations between each UGV cloud and the UAV cloud, each column refer
to a specific initial scale error.

soybean
row ID approach

registration err.
(trans/ros/scale)
scale error 0%

registration err.
(trans/ros/scale)
scale error 5%

registration err.
(trans/ros/scale)
scale error 10%

registration err.
(trans/ros/scale)
scale error 15%

registration err.
(trans/ros/scale)
scale error 20%

registration err.
(trans/ros/scale)
scale error 25%

A

Ours 0.03 m/0.05◦/− 0.03 m/0.03◦/1.9% 0.04 m/0.04◦/2.1% 0.04 m/0.05◦/2.0% 0.03 m/0.03◦/2.1% 0.05 m/0.04◦/2.3%
ICP 0.02 m/0.08◦/− 0.05 m/0.07◦/2.3% 0.04 m/0.08◦/2.2% fail fail fail

CPD [21] 0.02 m/0.03◦/− 0.04 m/0.08◦/2.2% 0.03 m/0.09◦/2.3% 0.03 m/0.08◦/2.4% fail fail
Go-ICP [26] 0.02 m/0.06◦/− fail fail fail fail fail

B

Ours 0.02 m/0.04◦/− 0.03 m/0.05◦/2.0% 0.03 m/0.04◦/1.9% 0.05 m/0.06◦/2.1% 0.05 m/0.07◦/2.3% 0.05 m/0.09◦/2.2%
ICP 0.04 m/0.05◦/− 0.04 m/0.07◦/2.1% 0.05 m/0.09◦/2.4% fail fail fail

CPD [21] 0.03 m/0.03◦/− 0.03 m/0.05◦/2.0% 0.03 m/0.06◦/2.2% 0.04 m/0.08◦/2.3% fail fail
Go-ICP [26] 0.02 m/0.07◦/− fail fail fail fail fail

C

Ours 0.04 m/0.02◦/− 0.04 m/0.06◦/2.1% 0.05 m/0.07◦/2.3% 0.04 m/0.03◦/2.2% 0.05 m/0.08◦/2.4% 0.05 m/0.10◦/2.5%
ICP 0.03 m/0.07◦/− 0.03 m/0.08◦/2.3% 0.05 m/0.10◦/2.4% fail fail fail

CPD [21] 0.04 m/0.06◦/− 0.04 m/0.05◦/1.9% 0.04 m/0.07◦/2.1% 0.05 m/0.08◦/2.4% fail fail
Go-ICP [26] 0.03 m/0.07◦/− fail fail fail fail fail

V. EXPERIMENTS

In order to analyze the performance of our system,
we collected 4 datasets in a soybean field in Eschikon
(Switzerland): (i) one aerial sequence of GPS-AHRS tagged
images (Soybean Field) gathered over the full field by a DJI
Mavic Pro UAV, flying at an altitude of 10 meters (e.g.,
Fig. 2 (left)); (ii) three ground sequences of GPS-AHRS
tagged images (Row A, Row B, and Row C) framing small
portions of the same field, acquired moving by hand the UAV
camera with a forward point-of-view, to simulate a UGV
moving along the crop rows (e.g., Fig. 2 (right)). For each
dataset, we obtained the 3D colored point clouds by using
a professional photogrammetry software (e.g, Fig. 1). For
each ground sequence, we provided a ground truth affine
transformation that aligns the related cloud with the point
cloud obtained with the UAV. In the following experiments,
we compared our approach with 3 point-set registration
algorithms: (i) a non-rigid ICP algorithm, (ii) the original
CPD [21] method, and (iii) a recent state-of-the art, globally
optimal, ICP algorithm (Go-ICP) [26]. We directly apply
those methods after pre-aligning the input point clouds by
using the initial guess provided by the GPS-AHRS couple,
and after pruning from the clouds all the points belonging
to the soil terrain, as done in Sec. IV.

A. Robustness Evaluation

This experiment is designed to show the robustness of
the proposed approach under different initial transformations
between the clouds to be aligned. We sample random head-
ing, translation, and scale displacements between the point
clouds, running the tested registration algorithms starting
from the sampled displacements. The final registration is
considered correct if all the following conditions are met:

et <= 0.05 m er <= 0.1◦ es <= 2.5% (4)

with et the translation error, er the rotation error, and es the
(directional) scale error. The results are illustrated in Fig. 4.
In all tests our method outperforms the other methods by
a wide margin, generally ensuring correct registrations for
errors up to 4 meters for the translation, 11.5 degrees for the
rotation, and 20% for the scale, with acceptable results also
for a scale error of 25%.

B. Accuracy Evaluation

This experiment is designed to evaluate the point cloud
alignment accuracy for successful registrations, under differ-
ent initial transformations between the aligned clouds (see
Sec. V-A). The results are reported in Tab. I, some qualitative
results are reported in Fig. 1 and Fig. 5. The accuracy



Fig. 5: (top) Qualitative result of the registration obtained by our method
aligning the input point clouds Row A (in blue) and Soybean Field (in red);
(bottom) the same result but showing the merged colored point cloud: the
input clouds are indistinguishable, a sign that the alignment is correct.

provided by our method is in line with the other methods and,
when the latter fail, ours continues to provide an accuracy
that does not decrease as the initial alignment error increases.

C. Runtime Evaluation

We finally report the runtime results in Tab. II. Our method
is far from being the fastest one (most of the time is spent on
computing the FPFH features), on the other hand it is much
more efficient than Go-ICP.

TABLE II: Runtime comparison between the tested methods.

Ours ICP CPD [21] Go-ICP [26]
Average Runtime [sec] 79.8 3.6 8.2 193.1

VI. CONCLUSIONS

In this paper we addressed the cooperative UAV-UGV
environment reconstruction problem in agricultural scenarios
by proposing an effective way to align 3D maps acquired
from both aerial and ground points-of-views. We cast the data
association problem as a LDOF problem among grid maps
that encode both geometric and semantic information. The
presented experiments support our claims, with our method
outperforming other approaches in several tests.
The future work includes the improvement of runtime per-
formance and a more exhaustive experimental evaluation.
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