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Abstract. This paper introduces a robust and efficient vision based
method for object detection and 3D pose estimation that exploits a novel
edge-based registration algorithm we called Direct Directional Chamfer
Optimization (D2CO). Our approach is able to handle textureless and
partially occluded objects and does not require any off-line object learn-
ing step. Depth edges and visible patterns extracted from the 3D CAD
model of the object are matched against edges detected in the current
grey level image by means of a 3D distance transform represented by an
image tensor, that encodes the minimum distance to an edge point in a
joint direction/location space. D2CO refines the object position employ-
ing a non-linear optimization procedure, where the cost being minimized
is extracted directly from the 3D image tensor. Differently from other
popular registration algorithms as ICP, that require to constantly up-
date the correspondences between points, our approach does not require
any iterative re-association step: the data association is implicitly opti-
mized while inferring the object position. This enables D2CO to obtain
a considerable gain in speed over other registration algorithms while
presenting a wider basin of convergence. We tested our system with
a set of challenging untextured objects in presence of occlusions and
cluttered background, showing accurate results and often outperforming
other state-of-the-art methods.

1 Introduction

A reliable object instance detection and localization system is an essential re-
quirement for most robotics applications, from robot-aided manufacturing to
service robotics applications, where a robot needs to grasp and manipulate ob-
jects in an accurate and reliable way. Many very promising image-based object
detection systems usually assumes that the searched objects are characterized
by salient visual patterns or textures, to be extracted using robust invariant de-
tectors (e.g., [15]) and matched against precomputed image-based models [18,
23]. Unfortunately, these methods can’t handle untextured, non-Lambertian ob-
jects: this often prevents the use of these methods for industrial applications,
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Fig. 1. [Top row]: The 3D CAD models of the untextured objects used in the experi-
ments. (a),(b) and (c) are metal objects with high-reflectance surfaces, while (d) and
(e) are black, plastic objects, and present a strong visible-light absorption. [Center row]:
The edge templates extracted from the CAD models. [Bottom row]: Some registration
results obtained using the D2CO algorithm, the initial guess is reported in blue, while
the final position estimate in red.

where objects are usually untextured and made with non-Lambertian materials
as metal or glass. Thanks to the availability of many commercial depth sensor as
RGB-D cameras, laser triangulation systems and 3D laser range finders, many
vision systems are currently moving toward these 3D sensors (e.g., [20, 21]). Al-
though these systems benefit of a full 3D representation of the workspace, they
still have some important limitations: i) The cost of a 3D industrial sensor is
still from 3 to 10 times higher than a conventional high resolution industrial
camera; ii) Current consumer RGB-D cameras can’t handle small objects due to
the limited resolution and the minimum viewing distance. Actually, we tested
the Microsoft Kinect RGB-D camera with the objects used in our experiments
(Fig. 1), and we found that the object (c) is often not even perceived from the
depth sensor, even at small distances.

In many cases, edge-based vision algorithms for object detection and lo-
calization still provide superior performances. In this context, state-of-the-art
methods (e.g., [11, 14]) usually perform an efficient and exhaustive template
matching over the whole image. Templates usually represents shapes extracted
from the 3D CAD of the object, seen from a number of viewpoints. Unfortu-
nately, in our experience we found that, given as input a single grey level image
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and no accurate scale priors, none of the tested state-of-the-art matching algo-
rithms provide as first output the best, true-positive, match. Actually, without
accurate scale priors, the searching space is huge, imposing a coarse-grained
viewpoint discretization. It is usually required to perform many time-consuming
object registration steps over a large set of object candidates, extracted from the
matching algorithm, in order to accurately detect the true best matches.
To address this problem, in this work we introduce an efficient and robust model-
based registration method we called Direct Directional Chamfer Optimization
(D2CO). D2CO works on grey level images: the backbone of our method is rep-
resented by the 3D distance transform proposed in [14] we call here Directional
Chamfer Distance (DCD). This distance improves the accuracy of the Cham-
fer matching by including edge orientation. The DCD is computed using a 3D
image tensor that, for each image pixel coordinates and for each (discretized)
direction, provides the minimum distance in a joint direction/location space. In
our experience, DCD-based matching provides the best matching results com-
pared with other state-of-the-art matching algorithms in case of clutter and
undetected image edges. [14] also introduced a refinement algorithm based on
ICP that exploits the DCD to re-compute the point-to-point correspondences. In
the following, we will refer to this algorithm with the acronym DC-ICP. DC-ICP
provides state-of-the-art registration results, but it is very slow since it requires
many iterations to converge. D2CO aims to overcome these limitations, taking
advantage of the DCD while boosting the convergence rate. The idea is to refine
the parameters using a cost function that exploits the DCD tensor in a direct
way, i.e., by retrieving the costs and the derivatives directly from the tensor.
Being a piecewise smooth function of both the image translation and the (edge)
orientation, the DCD ensures a wide basin of convergence. Differently from DC-
ICP, D2CO does not require to re-compute the point-to-point correspondences,
since the data association is implicitly encoded in the DCD tensor.
Experiments and quantitative evaluations performed on challenging scenes show
the effectiveness of our registration method.

1.1 Related Work

Vision systems for learning, detecting and localizing objects have been widely
studied in the computer vision and robotics communities for many years.

Image-based systems (e.g., [18, 23]) usually represents objects through col-
lections of distinctive local features (e.g., [15]) extracted form a number of view-
points. An overview of general image-based object recognition and localization
techniques can be found in [22], along with a performance evaluation of many
types of visual local descriptors used for 6 DoF pose estimation. Even if this
class of methods achieved impressive object recognition and categorization re-
sults, they can’t be easily applied to textureless objects. Moreover, image-based
systems usually fails to obtain accurate object localization results, due to the
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discrete nature of the collected viewpoints.

Model-based systems use instead 3D CAD models of the searched objects, or
the shapes extracted from the model, seen from a number of viewpoints. This
class of methods are well suited for robot-aided manufacturing or service robotics
applications: actually, besides ensuring greater accuracy in the localization task,
they can deal with untextured objects. In this context, many object detection
and registration techniques have been presented.
Recently, we presented a model-based vision system for 3D localization of pla-
nar textureless objects [17]. This system exploits a modified Generalized Hough
Transform to select object candidates, and an iterative optimize-and-score regis-
tration procedure that employs a constrained optimization to be robust against
local minima. Although the registration is very accurate, this system can deal
only with planar objects rotated up to ±40 degrees around x and y axes.
The iterative closest point (ICP) [2] is probably the best known point registra-
tion method: at each iteration, given the current parameters (i.e., a rigid-body
transformation), ICP re-computes the correspondences between points and then
updates the parameters as a solution of a least square problem. Fitzgibbon [8]
proposed to use the Levenberg-Marquardt algorithm to solve the ICP inner
loop, while employing a fast distance lookup based on the Chamfer Distance
Transform. Jian et al. [12] proposed a generalization of the ICP algorithm that
represents the input point sets using Gaussian mixture models.
Unfortunately, an initial data association far from the correct one, dramatically
increase the chances of ICP to get stuck in a wrong local minima. To mitigate
this problem, Gold et al. [9] proposed to relax the ICP assumption of fixed
correspondences between point sets: they proposed to assign “soft” correspon-
dences between points by means of scalar values in the range [0..1]. This method,
called robust point matching (RPM), has been recently extended by Lian and
Zhang [13]: they proposed a concave optimization approach for the RPM energy
function, that is globally optimal and it can handle the presence of outliers.
Unfortunately, these methods include in the parameters set the whole point cor-
respondences matrix, making them often unsuitable to real-world problems.
The Chamfer Distance Transform ([1, 3]), used also for registration in [8], has
played an important role in many model-based detection and matching algo-
rithms. Even if the original formulation suffers from not being robust to out-
liers, Chamfer matching and especially its variations still remain powerful tools
used for edge-based object detection and matching. Choi and Christensen [5]
employed Chamfer matching inside a particle filtering framework for texture-
less object detection and tracking. In [19] Shotton et al. presented a matching
scheme called Oriented Chamfer Matching (OCM): they proposed to augment
the Chamfer distance with an additional channel that encodes the edge points
orientations. Cai et al. [4] used sparse edge-based image descriptor to efficiently
prune object-pose hypotheses, and OCM for hypotheses verification. Danielsson
et al. [7] proposed an object category detection algorithm based on a voting
scheme that employs a set of distance transform maps, each one computed for
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a discretized orientation. Recently, Liu et al. [14] extended this idea proposing
the Fast Directional Chamfer Matching (FDCM) scheme, that exploits a 3D
distance transform reporting the minimum distance to an edge point in a joint
direction/location space: reported results show that FDCM outperform OCM.
[14] also presented an ICP-based registration algorithm that exploits the pro-
posed distance transform. The method presented in this paper was inspired from
[14] and [8].
Other recent model-based object matching algorithms use spread image gradient
orientations saved in a cache memory-friendly way [11] and multi-path edgelet
constellations [6].

2 Object Detection

In this section, we describe our object detection approach, that exploits the DCD
tensor in order to extract a set of objects candidates (i.e., their ’rough’ 3D loca-
tions) from the input image, based on the given model template.

2.1 Object Model

Edges represent the most informative image features that characterize untex-
tured objects: edges are usually generated by occlusions (depth edges) and high
curvature. Given a 3D CAD model of an object (e.g., first row of Fig. 1), we
need to extract a 3D template that includes only these edges. We start from
the 3D model wireframe, preserving only edges that belong to high curvature
parts or to the external object shape, while using the OpenGL z-buffer to deal
with occlusions. Some results of this procedure are shown in the second row of
Fig. 1. It is important to note that, in the general case, this procedure should
be repeated for each viewpoint, i.e., for each object position.
We finally produce a rasterization of this template, i.e. we extract from the tem-
plate a set of m sample points M = {o1, . . . ,om} ∈ R3, in the object reference
frame. Typically we employ a rasterization step of 1 − 2 mm. We also collect
another set of m points, M̄ = {ō1, . . . , ōm} ∈ R3, where:

ōi = oi + τ̂(oi) · dr (1)

τ̂(oi) is a function that provides the unit tangent vector, i.e. the unit direction
vector of the 3D edge the raster point belongs to, while dr is a small scalar
increment, dr � 1. Given a transformation gcam,obj ∈ SE(3) from the object
frame to the camera frame, we can project the raster points on the image plane
as:

xi = π(oi,gcam,obj) ∈ R2, i = {1, . . . ,m} (2)

The idea behind these two set of 3D points is simple: by projecting on the image
plane the raster points M along with the points M̄, it is possible to easily
recover also the 2D local directions (orientations) of the projected edge points
in the image plane.
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2.2 Edge Points Extraction

In order to match the edge template extracted from the CAD model, we need to
detect edges in the input image. We adopt here the concept of edgelet, a straight
segment that can be part of a longer, possibly curved, line, extracted using a
state-of-the-art detection algorithm for line segment detector called LSD [10].
This algorithm searches the input image for edgelets starting from pixels with
higher gradient magnitude, looking in the neighbourhood for pixels with similar
gradient directions. A line-support region is therefore selected and validated in
order to discard the outliers.
We employ the LSD algorithm on a Gaussian pyramid of the input image, en-
abling to include in the final set also edgelets that appear in higher scales. This
technique increases the sensitivity of the edge detector, at the cost of a re-
duced accuracy in the localization of the edgelets. For each detected edgelet,
we also compute its orientation in the image reference frame. We define as
E = {e1, . . . , en} ∈ R2 the set of pixels (edgels) that belong to edgelets.

2.3 Directional Chamfer Distance

As introduced above, our approach leverages the Directional Chamfer Distance
tensor in both the detection and registration steps. The DCD tensor (DT3V )
is represented by an ordered sequence of distance transform maps1, each one
representing a discretized edge direction. The basic idea behind the Directional
Chamfer Distance is simple:

– Divide the set of edgelets computed in Sec. 2.2 into several subsets by quan-
tizing their directions;

– draw each edgelets set in a different binary image;
– compute one distance transform map for each subset using the binary images

computed above.

In this way, each map reports the minimum distance from a set of edges with
almost the same direction. Liu et al. [14] extended this idea enabling the DCD
tensor DT3V to encode the minimum distance to an edge point in a joint location
and orientation space. Be xi the 2D projection on the image plane of a 3D raster
edge point oi with Ξ(xi) a function that provides its (scalar) direction in the
image reference frame, computed projecting also ōi (see Sec. 3). The minimum
distance to an edge point (edgel) ej can be recovered as:

DT3V (xi, Ξ(xi)) = min
ej∈E

(‖xi − ej‖+ λ‖φ(Ξ(xi))− φ(o(ej))‖) (3)

where o(ej) is the edgel orientation and φ(.) is an operator that provides the
nearest quantized orientation. The tensor DT3V can be easily computed by ap-
plying a forward and backward recursions to the sequence of distance transform

1 In our case, a distance transform is an image where each pixel reports the distance
to the closest edge pixel (edgel).
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Fig. 2. Some examples of objects candidates extraction. The red template represents
the ground truth position of the object, green and blue templates represent the true
and false positives, respectively.

maps described above, see [14] for the details. Since our optimization framework
employs the tensor DT3V in a direct way (see Sec. 3), we need to ensure that
the function DT3V : R3 → R that it represents is piecewise smooth. To this end,
we smooth the tensor along the direction (orientation) dimension using a simple
Gaussian filter. In all our experiments, we use 60 discretized orientations and we
set λ to 100 and σ2 (the variance the Gaussian filter) to 1.

2.4 Candidate Extraction

Since we perform the object detection task without knowing any accurate scale
prior, the huge 6D searching space imposes a coarse-grained viewpoint discretiza-
tion. In order to speedup the process, for each object in the dataset we pre-
compute the (projected) raster templates along with their image orientations
for a large number of possible 3D locations. Each template includes in such a
way a set of image points along with their orientation: by performing a set of
lookups on the tensor DT3V , we can compute the average distance in an efficient
way. Finally, we sort the templates for increasing distance: the top rated tem-
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plates (e.g., see Fig. 2) represent our objects hypothesis (or “object candidates”),
to be registered and validated.

3 Object Registration

Once we have obtained a set of objects candidates, we need to precisely locate
each true positive object, while discarding the outliers. D2CO refines the object
position employing a non-linear optimization procedure that minimizes a tensor-
based cost function.
Given a set of m raster points extracted from the 3D CAD model, from Eq. 2
we can obtain the corresponding image projections xi. We can also express the
transformation gcam,obj in terms of a translation vector T = [tx ty tz]

T and
a orientation vector Ω = [rx ry rz]

T , both in R3. We make explicit this fact

using the notation g(T,Ω) = gcam,obj . R(Ω)
.
= exp(Ω̂) is the rotation matrix

corresponding to the rotation vector Ω, where Ω̂ is the skew-symmetric matrix
corresponding to Ω, and LogSO(3)(R(Ω))

.
= Ω is the rotation vector Ω corre-

sponding to the rotation matrix R(Ω) [16]. Our optimization procedure aims to
find the parameters (T̃, Ω̃) ∈ R6 that minimize:

E(T,Ω) =
1

2

m∑
i=1

DT3V [π(oi,g(T,Ω)), Ξ(π(oi,g(T,Ω)))]
2

(4)

While we can assume that, for small viewpoint transformations, the 3D raster
points do not change (i.e., we can neglect changes in the occlusions), this fact
does not apply for their image projections. Moreover, Eq. 4 also requires to
constantly update the projected (edge) point orientations. We first project also
the point set M̄: x̄i = π(ōi,gcam,obj), i = {1, . . . ,m}. If we define di , x̄i − xi,
for each iteration of the optimization we can compute the updated orientations
as:

Ξ(π(oi,g(T,Ω))) = Ξ(xi) = atan

(
di(1)

di(0)

)
(5)

In order to apply a non-linear minimization on E(T,Ω), we have to compute its
derivatives ∇E. Application of the chain rule yields:

∇E =

m∑
i=1

{∇DT3V ∇ [π(oi,g(T,Ω)), Ξ(π(oi,g(T,Ω)))]} (6)

Since DT3V is only defined at discrete points, its derivatives ∇DT3V should
be computed in a numerical, approximate way. To this end, we compute the x
and y derivatives as the image derivatives of the currently selected distance map
and, in a similar way, the derivative along the orientation direction ξ as:

δDT3V
δξ

(x, ξ) =
DT3V (x, ξ + 1)−DT3V (x, ξ − 1)

2
(7)
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We lookup theDT3V tensor employing a bilinear interpolation operator, adapted
to the 3D nature of DT3V : this enables to improve the level of smoothness of
the cost function.
We perform the optimization using the Levenberg-Marquardt algorithm and,
as suggested in [8], a Huber loss function in order to reduces the influence of
outliers.

3.1 The Scoring Function

Some of the selected hypothesis used as initial guess for the registration may
represent false positive objects: after the position refinement presented above,
we need to employ a metrics that allows us to discard the outliers and to select
the best match. We use a simple but effective scoring function based on local
image gradient directions. Given xi a raster point projected on the image plane,
we can compute its image normal direction ndir(xi): in the ideal case of a perfect
match, this direction should correspond to the local gradient direction Iθ(xi) (up
to a rotation of π radians), where Iθ is the gradient direction image computed
directly from the input image. We define the scoring function as:

Ψ(gcam,obj) =
1

m

m∑
1

| cos (Iθ(xi)− ndir(xi)) | (8)

Clearly Ψ(gcam,obj) can get values from 0 to 1, where 1 represents the score for
a perfect, ideal match. In our experiments, all good matches (inliers) obtain a
score greater than 0.8. We discard all the matches with a score less than this
threshold: they can be outliers (false positive objects) or real objects heavily
occluded.

4 Experiments

We present two different experimental validations. The first experiment aims
to show that FDCM [14], that is the backbone of D2CO, outperforms in our
dataset another recent state-of-the-art object detection algorithm. In a second
experiments, we compare D2CO to other registration techniques, showing state-
of-the-art performances with a gain in speed up to a factor 10.

Our dataset2 is composed by 60 1024x768 grey level images of scenes that
contain up to 5 untextured objects3 (see Fig. 1) disposed in arbitrary 3D posi-
tions, often mutually occluded. In some images we added a background board
with multiple patterns in order to simulate a (visual) crowded background (e.g.,
see Fig. 4). Each image is provided with the ground truth positions of the ob-
jects, obtained with an externally guided procedure. All the experiments were

2 The dataset is available at http://www.dis.uniroma1.it/~labrococo/D2CO
3 The objects used in the experiments are currently employed in the RoCKIn@Work

competitions, http://rockinrobotchallenge.eu
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performed running the algorithms on a standard laptop with an Intel Core i7-
3820QM CPU with 2.70GHz, using a single core. All the compared algorithms
has been implemented in C++ without any strong optimization. When possible,
they share the same codebase and the same parameters, enabling an objective
performance and timing comparison.

4.1 Object Detection

In the first experiment, we compare our object matching approach, that is
strongly related with FDCM presented in [14], with a state-of-the-art object
detection approach (called in the plots GRM, from Gradient Response Maps)
described in [11] (since we are using only images, we use the LINE-2D version).
In our experiments we don’t perform any memory linearization as in [11], since
we don’t assume that the object projection remain the same every x− y trans-
lation. Anyhow, this modification does not affect the performance of GRM: it
just runs slower.
We perform object matching starting from a set of 1260 pose candidates for each
one of the 60 scenes of our dataset. Each of these candidates are acquired by
sampling a large cubic scene region containing the target objects. Fig. 3 shows
how FDCM outperforms GRM in terms of correct detection rate against the
number of false positives for each image.
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Fig. 3. True positives rate plotted against the number of false positives (the letters
(a),..(e) refer to the objects of Fig. 1).
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4.2 Object Registration

(a) (b) (c) (d) (e)

Fig. 4. Other registration results obtained using the D2CO algorithm, the initial guess
is reported in blue, final position estimate in red (the letters (a),..(e) refer to the objects
of Fig. 1).

We compared our approach (D2CO) to DC-ICP [14], LM-ICP [8], C-ICP
(ICP that exploits the Chamfer distance) and Direct (a simple coarse-to-fine
object registration strategy that uses a Gaussian pyramid of gradient magnitudes
images). All the tested algorithms share the same inner loop’s stopping criteria
parameters. We set the number of external ICP iterations to 50: we verified
that this is a good trade-off in order to reach reliable results in our dataset. For
each image and for each object in the image, we sampled 100 random positions
around the ground truth position (e.g., the blue templates reported in Fig. 4).
We used these positions as initial guesses for the registration algorithms we are
testing. The final estimated position (e.g., the red templates reported in Fig. 4)
is checked against the ground truth: if the total angular error was less than 0.1
radians, and the total error of translation was less than 5 mm, the registration
was considered correct.
The proposed D2CO algorithm outperforms the other methods in almost all tests
(Fig. 5), while getting a gain in speed of a factor 10 compared to the second most
competitive approach (see Table 1).
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Fig. 5. Correct registrations rate plotted against the distance (angle + translation) of
the initial guess from the ground truth position (the letters (a),..(e) refer to the objects
of Fig. 1).

Table 1. Average object registration time (milliseconds).

Algorithm D2CO DC-ICP LM-ICP C-ICP Direct

Time (msec) 56.49 659.09 68.43 601.10 65.83

5 Conclusions and Future Works

In this paper, we have proposed an object detection and localization system
that combines a state-of-the-art untextured object detection algorithm with a
novel registration strategy that leverages the Directional Chamfer Distance ten-
sor in a direct and efficient way. We tested our system with a set of challenging
untextured objects in presence of occlusions and cluttered background, getting
state-of-the-art results while saving computation time.
We are currently improving our system by enabling the optimization to work
directly on the directional integral images representation of the DCD tensor, in
order to further speedup the registration process.
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