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Abstract—Precision agriculture is gaining increasing attention
because of the possible reduction of agricultural inputs (e.g.,
fertilizers and pesticides) that can be obtained by using high-
tech equipment, including robots. In this paper, we focus on an
agricultural robotics system that addresses the weeding problem
by means of selective spraying or mechanical removal of the
detected weeds. In particular, we describe a deep learning based
method to allow a robot to perform an accurate weed/crop classi-
fication using a sequence of two Convolutional Neural Networks
(CNNs) applied to RGB images. The first network, based on
an encoder-decoder segmentation architecture, performs a pixel-
wise, plant-type agnostic, segmentation between vegetation and
soil that enables to extract a set of connected blobs representing
plant instances. We show that such network can be trained also
using external, ready to use pixel-wise labeled data sets coming
from different contexts. Each plant is hence classified between
crop and weeds by using the second network. Quantitative
experimental results, obtained on real world data, demonstrate
that the proposed approach can achieve good classification results
also on challenging images.

I. INTRODUCTION

Autonomous robotics applications for precision agriculture
represent a concrete solution towards a sustainable agriculture
and chemical treatments reduction [1]. The term crop defines
the cultivated plant, while the term weeds defines unwanted
plants that grow spontaneously in the field. Precision weed
control is a challenging task that aims to reduce the amount
of herbicides without compromising the quality of crops. It
can be achieved by selective spraying or accurate mechanical
removal of weeds, while achieving that manually is time-
consuming and expensive.

Autonomous robots equipped with automatic weed detec-
tion systems can be used to improve the efficiency of precision
farming techniques on weed control by modulating herbicide
spraying appropriately to the level of weeds infestation. How-
ever, the great variety of crop and weeds shapes, size and
colors, together with the presence of overlapping between
plants, makes automatic crop/weeds classification throughout
images a challenging task for autonomous farming robots [2].
Nevertheless, the capability to generalize the trained models
still remains an obstacle to employ farming robots in different

(a)

(b) (c)

Fig. 1: (a) The robot used to acquire the data sets used in the
experiments. (b) An example of RGB image provided by the
camera mounted on the robot. (c) Label mask with bounding
boxes predicted by our approach for image (b); pixels that
belong to crop are colored in green while pixels that belong
to weeds are colored in red.

farm conditions, e.g., caused by environmental changes, plants
characteristics and types of soil, as highlighted in [3], [4].

In this paper, we present a novel approach for combining
robust pixel-wise segmentation with a supervised image clas-
sification based on Convolutional Neural Networks (CNNs)
applied to RGB images acquired by a farming robot on a
sunflower field (see Fig. 1). In particular, we use a deep
convolutional encoder-decoder architecture for robust semantic



Fig. 2: The proposed three-steps approach. The first step is a binary pixel-wise segmentation (i.e., soil/plant) of the RGB input
image. The second step concerns the extraction of the image patches to be classified. Crop/weed classification is carried out
in the third step.

pixel-wise segmentation, background removal and the extrac-
tion of regions of interest (ROIs). The chosen network is based
on the UNet architecture [5] with a modified VGG-16 encoder
[6] followed by a binary pixel-wise classification layer. A
coarse-to-fine classifier based on CNN is used to classify the
extracted ROIs into crop and weeds.

The main contributions of this work are:
• A background removal method that uses a deep pixel-

wise segmentation to distinguish between soil and plants.
• An accurate crop/weed classifier based on a deep CNN.
The aim of the proposed approach is to reduce the limita-

tions of CNNs in generalizing when a limited amount of data
with pixel-wise annotations is available: pixel-wise labeling is
in fact the bottleneck for most crop/weeds classification meth-
ods. Our method relies on a robust binary segmentation that
is agnostic to plant species, so easily trainable also by using
external, ready to use pixel-wise labeled data sets that possibly
do not includes the target crop. The classification between crop
and weeds is then obtained feeding a classification CNN with
image patches (i.e., bounding boxes) enclosing plant instances.
The generation of specialized data sets for such a CNN is
a simpler and faster operation compared with respect to the
generation of pixel-wise annotated data sets.

The reminder of the paper is organized as follows. Section
II contains a discussion of similar approaches present in the
literature. Section III describes the details of the proposed
method, while Section IV shows both qualitative and quan-
titative results obtained on publicly available data. Finally,
conclusions are drawn in Section V.

II. RELATED WORK

The problem of vision based crop and weeds classification
has been addressed in different ways. Handcrafted features are
used, among others, in [7], [8]. De Rainville et al. [7] present
an unsupervised classification method based on morphological
features extracted taking into account the spatial localization
of vegetation in the field. Haug et al. [8] present a method to
classify carrot plants and weeds from RGB and near-infrared
(NIR) images that uses a background removal step based on
the Normalized Difference Vegetation Index (NDVI) and a
Random Forest classifier applied to features extracted at sparse
pixel positions. This approach has been extended in [2], where
a plant arrangement prior is added to the features list used

for classification, and tailored for UAVs (Unmanned Aerial
Vehicles) applications in [9].

The adoption of deep CNNs in overcoming the limitations
of handcrafted features has been explored, among others, in
[4], [10], [11]. Fine-tuned pre-trained CNN models are used
for plant classification of 44 different species in [10]. Potena
et al. [11] proposes an on-line perception system for weed-
crop classification that uses a cascade of two different CNNs:
a shallow CNN performs vegetation detection, while a second,
slightly deeper CNN discriminates between weeds and crops.
Encoder-decoder architectures such as the SegNet segmenta-
tion network [12] are used in [3], [13], [14]. In [13], a SegNet
network is fed with 3 channels images that include the NIR
channel, the red channel from the RGB image, and the NDVI
map. A similar approach is exploited in [3], where 14 channels
images that include several vegetation indices are used as input
for a modified version of the SegNet network. Procedurally
generated synthetic training data sets are used to train a SegNet
network in [14], by randomizing the key features of the target
environment (i.e., crop and weed species, type of soil, and light
conditions). The fully convolutional network (FCN) proposed
in [15] is employed in [4], [16]. In [4], authors exploits
the crop arrangement as a further source of information, by
analyzing image sequences that cover a portion of the field.
Class-wise stem detection and pixel-wise crop/weeds semantic
segmentation is jointly addressed in [16]. Model compression
and mixtures of lightweight CNNs are exploited in [17] to
learn from a very deep, pre-trained model a lighter model
which allows real-time weed segmentation also for robots
with limited computing power. Multi-spectral features and 3D
surface features are exploited for plant classification in [18].

III. METHODS

We propose to perform crop/weed classification with a
three-step procedure (see Fig. 2).

Segmentation process. To remove the background (i.e., the
soil), we firstly apply a robust pixel-wise soil/plant segmenta-
tion of the RGB image in input. We use a modified version
of the UNet semantic segmentation network [5], which is
composed by a contracting encoder along with a symmetric
expanding decoder. In our implementation, the contracting
path consists of a VGG-16 structure modified by removing
the last fully connected layers and fine-tuning the other layers.
The indices of spatial information in the pooling operations



Fig. 3: The classification pipeline.

are spread through the expansive path, which contains a
sequence of up-convolution operations of features encoded
in the contracting path. The expanding decoder is designed
with 4-convolutional layers, where each layer is composed of
a batch normalization, 4-upsampling layers and a soft-max
pixel-wise classifier. Between the contracting and expanding
paths, there is a bottleneck consisting of two convolutional
layers combined with batch normalization and a dropout
activation function.

The lack of pixel-wise annotated data sets for each possi-
ble crop type and for different field conditions can lead to
strong challenges in generalizing an end-to-end crop/weeds
segmentation network. The goal of the first step is to obtain a
robust binary segmentation mask that enables to generate blobs
corresponding to vegetation pixels in the RGB image, so to
simplify the following classification step. This is obtained by
exploiting the similarities of various plants properties instead
of differentiate between them. The idea is to train the first
segmentation network by exploiting external, ready to use
data sets coming from different contexts, containing different
plants categories, types of fields, and captured under varying
environmental conditions. This context-independent training
possibly enables to avoid to pixel-wise annotate large amount
of data acquired in the target filed, an operation that usually
requires a lot of manual work.

Blob extraction. The second step concerns the extraction
of the image ROIs to be classified. This is obtained by
extracting the vegetation blobs contained in the binary mask

generated during the segmentation process. In this stage, the
input consists in the original RGB image plus the binary
mask generated during the segmentation process. A dilation
operator is applied to the binary mask to gradually increase the
boundaries of the foreground regions (i.e., the areas containing
vegetation pixels) to reduce the holes between those regions.
Then, the connected blobs from the dilated mask are extracted,
and a bounding box for each blob is determined. Finally, a set
of patches from the original RGB image corresponding to the
bounding boxes is generated.

Classification. A deep CNN for crop/weed classification
is employed in the third step. The image patches identified
in the previous step are fed to the CNN classifier, which is
based on a fine-tuned model of VGG-16 exploiting the ability
of deep CNN in object classification. The VGG-16 network
architecture for object classification is used as encoder. The
network consists of 13-convolutional layers with a kernel of
3×3. A max-pooling operation with a kernel of 2×2 with
a stride of 2 for down-sampling. Batch normalization and a
ReLU activation function are used too. This step just requires a
training data set that includes labeled patches with positive and
negative examples of the target crop. The annotation of such
training data set just requires to specify a label for each image,
that is a much faster operation than a pixel-wise annotation.

Fig. 3 shows the classification pipeline. To create the figure,
we have used a fine-tuned VGG-16 encoder model at early step
of the training, showing randomly picked up filters to illustrate
the ability of the network to learn weights based on neurons



Algorithm 1 The proposed crop/weed classification algorithm

1: Input: RGB image IRGB

2: Result: A set of classified blobs Bc

3: M ← Segmentation of IRGB using VGG-UNet
4: C ← Contour-Extraction(M ) . set of contours belonging

to connected regions
5: for i in range len(C) do
6: BM [i] ← BoundRect(C[i]) . BM [i] is the

bounding box around the contour i
7: BRGB [i] ← (IRGB ∩ BM [i]) . BRGB [i] is the

corresponding bounding box from RGB image
8: Bc[i] ← (classify BRGB [i] using VGG-16 into weed

or crop)
9: end for

responses to image pixels (e.g., soil/plant pixel).
The full crop/weeds classification algorithm is reported in

Algorithm 1.

IV. EXPERIMENTAL RESULTS

For training our deep CNNs, we have used a data set
recorded in a sunflower farm in Italy over a period of one
month in spring 2016. To demonstrate the ability of the
proposed approach in generalizing, in addition to the sun-
flower data set, we have considered also two other publicibly
available data sets, which contains images about carrots [19]
and sugar beets [20]. Carrots and sugar beets data sets were
acquired in different field conditions, different species of
plants, and at different stages of plant level with respect to
the data set used for training.

The experiments at first aim to demonstrate the performance
of different deep CNN architecture on pixel-wise segmentation
in order to classify pixels in image into three classes, namely
soil, crop, and weed. Then, the same network architectures
are used to measure the performance on background removal
(e.g., pixel classification into only two classes soil and plants).
To this end, we use only RGB images as input to the
recent state-of-the-art models SegNet [12] based on VGG-16
encoder, UNet, UNet based on VGG-16 decoder (VGG-UNet),
BonNet [21] and fully connected network FCN8 [22]. In the
same manner of [3], we have filtered the blobs that have less
than 50 pixels with an input image size of 512×384.

To improve the segmentation performance, we increase the
number of input channels by a set of vegetation indices: Excess
Green (ExG), Excess Red (ExR), Color Index of Vegetation
Extraction (CIVE), and Normalized Difference Index (NDI).
Those indicators proved their ability to segment vegetation and
they do not present high sensitivity to soil types or weather
condition [3]. In addition to the previous inputs, we use the
HSV (hue, saturation, value) representation of the input image,
concatenating all those representations along with the input
RGB image to form a multi-channel input volume.

A. Network Training

Segmentation. We trained the proposed VGG-UNet by
initializing the encoder (VGG-16) with the weights taken from
training the VGG-16 on the ImageNet data set, then we trained
the whole network using Stochastic Gradient Descent (SGD)
with a fixed learning rate of 1 · e−4 and a momentum of 0.90.
The parameters of the network are updated in a way that cross
entropy loss is reduced. Mini-batches composed by one image
were used for training.

Classification. We used the VGG-16 architecture, pre-
trained on the ImageNet data set, from which we removed
the fully connected layer from the top of the model and
we used the rest of the model as feature extractor from our
data set (bottleneck features). We then run this model on our
training and validation data once, recording the output from
the last activation maps before the fully-connected layers in
two arrays. We trained a fully-connected model on top of the
stored features. This allowed us to reach a validation accuracy
of 0.93 − 0.94 in two minutes using a single NVIDIA GTX
1070 GPU. This enables our classifier to adapt quickly and
easily with new data sets. We used the RMSprop optimizer
with learning rate of 0.001 and the binary cross entropy as
loss function.

B. Training Data

Segmentation. The training data set is made of a set of
500 images acquired in a sunflower field by a custom-built
agricultural field robot. The data set is labeled with three
classes (i.e., soil, crop and weeds). Ground truth annotations
consist in binary masks generated via manual segmentation.
An intensity value of 1 in the binary masks corresponds to
the segmented crop, 2 to segmented weeds, and pixels with 0
value correspond to the background soil. Data augmentation
was performed using rotations, horizontal and vertical flipping,
and zooming. The final data set was composed by 2000
images, divided into 1500 images for training, 350 images
for validation, and 150 images for test.

Classification. The training data set for classification was
generated from the same data set used for training the seg-
mentation model. In particular, we extracted 1600 sunflower
batches and 1500 weeds batches.

C. Testing Data

Segmentation. The data set used for the training procedure
(Sec. IV-B) does not present all the challenges introduced
when dealing with a real-world field, because it does not
contain data captured with different field conditions and at
different stages of plant level. For this reason, in order to
properly evaluate our approach, we used for testing 100 images
coming from the so-called sugar beets data set [20] and other
60 labelled images acquired on a commercial organic carrot
farm [19] (the so-called carrots data set). It is important to
note that carrots and sugar beets data sets were not included
in fine tuning VGG-16 encoder and were used only to evaluate
the capability of VGG-UNet to generalize.



Fig. 4: Samples from the data set used for training and testing. The first row contains the RGB images in input, while the
second row shows the ground truth masks. In the first, second, and third columns sunflower images taken under different
lighting condition and different age of growth are shown. The fourth column refers to the organic carrots data set and the fifth
column refers to the sugar beets data set.

Fig. 5: Qualitative results achieved by different CNN structures. First column RGB images, second column ground truth mask,
third, forth, fifth, and sixth prediction from Bonnet, VGG-UNet,VGG-Segnet, and UNet.

TABLE I: Quantitative results illustrating mIOU obtained by
different networks architectures on the sunflowers data set

Architecture 3-classes 2-classes

VGG-SegNet 0.68 0.90
UNet 0.62 0.90

BonnNet 0.80 0.90
FCN8 0.31 0.45

VGG-UNet 0.64 0.91

Fig. 4 shows images from the three different data sets and
their masks.

Classification. We tested the fine-tuned VGG-16 binary
classifier on a data set consisting of 150 sunflower batches
and 150 weed batches. The batches were of various size and
we resized them to 64×64 pixels.

D. Evaluation

Qualitative results of using different network architectures
for pixel-wise segmentation (background removal) on three
different input images are shown in Fig. 5.

The metric used in the evaluation procedure is the Mean
Intersection-Over-Union (mIOU), which is a common metric
used in evaluating image segmentation performance [21]. IOU
is computed as follows:

mIOU =
1

C

C∑
i=1

TPj

TPj + FPj + FNj
(1)

where TP stands for True Positive, FP for False Positive,
FN for False Negative, and C is the total number of classes.

Table I shows the results obtained by using different net-
work architectures on the sunflower data set. When consid-



TABLE II: mIOU obtained using a multi-input for the seg-
mentation model

Architecture sugar beets carrots sunflowers

VGG-UNet 0.75 0.51 0.91
Multi-input VGG-UNet 0.80 0.86 0.92

Fig. 6: Qualitative results obtained by VGG-UNet and multi-
input VGG-UNet.

ering only two classes, namely soil/plants, the VGG-UNet
approach outperforms the other tested approaches.

Augmenting the number of input channels to VGG-UNet
(multi-input VGG-UNet) by using additional vegetation in-
dices improves the segmentation performance and the ability
of the VGG-UNet to handle data sets under various farm
conditions, and plant and soil types. Quantitative results are
given in Table II, showing how the segmentation performance
of VGG-UNet decreased on the carrot data set, where images
were acquired under different lightning conditions and dif-
ferent type of soil, and the improvement obtained by using
a multi-input scheme. Fig. 6 shows the qualitative results
obtained by applying multi-input channels to VGG-UNet.

We have evaluated the binary-classifier using four metrics,
namely accuracy, sensitivity, specificity and precision. The
target classes are sunflower and weed. Fig. 7 illustrates the
classification performance of the fine-tuned VGG-16 model,
where red rectangles indicate wrong classified batches and
green ones are the correct classified. Table III shows the
quantitative results for sunflower/weed classification.

Full Pipeline. Examples of the application of the full
pipeline (i.e., segmentation plus classification) can be seen in
Fig. 81.

The evaluation of the full pipeline based on object-wise
classification accuracy is given in the form of the confusion
matrix shown in Fig. 9. The result for correctly detected crops
was 87%, while the 13% of crop detected as weed is mainly
due to the overlapping problem between weeds and crop.
The 32% of soil detected as weeds is due to inaccuracies in
the binary masks coming from the segmentation process: the

1The results on the complete set of test images can be seen in a video
available at https://youtu.be/cBYtL6Zp5bQ

Fig. 7: Qualitative results for the classification process.

TABLE III: Quantitative results of the CNN based classifier

Class Accuracy Sensitivity Specificity Precision

Weed 0.90 0.94 0.87 0.88
Sunflower 0.90 0.87 0.94 0.92

dilation operation carried out to increase the boundaries of the
foreground regions during the blob detection process increases
the number of soil pixels included in weeds blobs.

V. CONCLUSIONS

In this paper, we present a crop/weeds classification ap-
proach based on a three-steps procedure. The first step is
a robust pixel-wise segmentation (i.e., soil/plant) and image
patches containing plants are extracted in the second step. In
the third step, a deep CNN for crop/weed classification is used.
The extracted blobs in the masked image containing plants
information are fed to a CNN classifier based on a fine-tuned
model of VGG-16 exploiting the ability of deep CNN in object
classification.

Our goal is to reduce the limitations of CNNs in general-
izing when a limited amount of data is available. In fact, our
segmentation method is not based on plant types, but instead it
possibly can use images coming from different types of crops
and soils, which are usually easier to obtain in large quantities.
The classification step can then be specialized to the types of
plants needed by the application scenario.

The proposed approach has been tested on real-world
images coming from three different data sets. In particular,
we have quantitatively evaluated the segmentation and the
classification processes separately. Then, we have evaluated
the complete pipeline, including the first background removal
phase and the subsequent classification stage. Experimental
results demonstrate that the proposed approach can achieve
good classification results on challenging data.

As future directions, we aim to insert between the segmen-
tation and classification steps an automatic alignment process
to improve the classification accuracy of our pipeline.
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Stachniss, “An effective classification system for separating sugar beets
and weeds for precision farming applications,” in ICRA, 2016, pp. 5157–
5163.

[3] A. Milioto, P. Lottes, and C. Stachniss, “Real-time semantic segmen-
tation of crop and weed for precision agriculture robots leveraging
background knowledge in cnns,” in ICRA, 2018, pp. 2229–2235.

[4] P. Lottes, J. Behley, A. Milioto, and C. Stachniss, “Fully convolutional
networks with sequential information for robust crop and weed detection
in precision farming,” IEEE Robotics and Automation Letters (RA-L),
vol. 3, pp. 3097–3104, 2018.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention, 2015, pp.
234–241.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[7] F.-M. De Rainville, A. Durand, F.-A. Fortin, K. Tanguy, X. Maldague,
B. Panneton, and M.-J. Simard, “Bayesian classification and unsuper-
vised learning for isolating weeds in row crops,” Pattern Analysis and
Applications, vol. 17, no. 2, pp. 401–414, 2014.

[8] S. Haug, A. Michaels, P. Biber, and J. Ostermann, “Plant classification
system for crop/weed discrimination without segmentation,” in WACV.
IEEE, 2014, pp. 1142–1149.

[9] P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss, “Uav-
based crop and weed classification for smart farming,” in ICRA, 2017,
pp. 3024–3031.

[10] S. H. Lee, C. S. Chan, P. Wilkin, and P. Remagnino, “Deep-plant: Plant
identification with convolutional neural networks,” in ICIP. IEEE, 2015,
pp. 452–456.

[11] C. Potena, D. Nardi, and A. Pretto, “Fast and accurate crop and weed
identification with summarized train sets for precision agriculture,” in
International Conference on Intelligent Autonomous Systems, 2016, pp.
105–121.

[12] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” arXiv
preprint arXiv:1511.00561, 2015.
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