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Abstract—The availability of affordable depth sensors in
conjunction with common RGB cameras (even in the same
device, e.g. the Microsoft Kinect) provides robots with a com-
plete and instantaneous representation of both the appearance
and the 3D structure of the current surrounding environment.
This type of information enables robots to safely navigate,
perceive and actively interact with other agents inside the
working environment. It is clear that, in order to obtain a
reliable and accurate representation, not only the intrinsic
parameters of each sensors should be precisely calibrated, but
also the extrinsic parameters relating the two sensors should
be precisely known. In this paper, we propose a human-
friendly and reliable calibration framework, that enables to
easily estimate both the intrinsic and extrinsic parameters of
a camera-depth sensor couple. Real world experiments using a
Kinect show improvements for both the 3D structure estimation
and the association tasks.

I. INTRODUCTION

Typical robotic tasks like SLAM, navigation, object recog-
nition and many others, highly benefit from having color and
depth information fused together. While color information is
almost always provided by RGB cameras, there are plenty
of sensors able to provide depth information: time-of-flight
(ToF) cameras, laser range scanners and sensors based on
structured light. Even if there are some devices able to
provide both color and depth data (e.g. the popular low-
cost Microsoft Kinect, composed by two very close sensors),
as far as we know, there are no integrated sensors able to
provide both color and depth information yet. In this paper
we focus on Kinect-like devices (among others, the Asus
Xtion Pro Live). These sensors provide colored point clouds
that suffer from a non accurate association between depth
and RGB data, due to a non perfect alignment between the
camera and the depth sensor. Moreover, depth images suffer
from a geometric distortion, typically irregular and position
dependent. Finally, we have noticed that for increasing
distances, there is an increasing bias (i.e., a systematic error)
in depth measurements. These devices are factory calibrated,
so each sensor is sold with its own calibration parameter set
stored inside a non-volatile memory. However, the quality
of this calibration is only adequate for gaming purposes.
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Fig. 1. Some results of our calibration procedure: (a) The non perfect
alignment between the camera and the depth sensor produce inaccuracies
in the depth-color association (left point cloud). A better alignment obtained
with our calibration procedure results in a more accurate association (right
point cloud). (b) A point cloud of a planar surface (a wall) without depth
distortion correction (top) and the same cloud after the application of the
proposed undistortion map (bottom).

Moreover, the depth distortion is not modeled in the factory
calibration. A proper calibration method for robust robotics
applications should precisely estimate the misalignment and
both the systematic and distortion errors.

We propose a novel calibration method that employs a

simple data-collection procedure, that only needs a mini-
mally structured environment, and that does not require any
parameters tuning or a great interaction with the calibration
software. Moreover, even if the principal targets of the
method are the Kinect-like devices mentioned above, it is
thought to be used also with, even non-close, heterogeneous
camera-depth sensor couples.
Given a calibrated camera and an uncalibrated depth sensor,
the proposed method automatically infers the intrinsic pa-
rameter set of the depth sensor and the alignment between
the two sensors, i.e. the rigid body transformation that relates
the two sensor frames.

For the depth sensor, we employ an error model that



includes a “distance space” distortion error along with a
variable systematic error (in the following also called “global
error”’). We propose to represent the undistortion map by
means of a set of functions (quadratics for the Kinect),
iteratively fitted to the acquired data during a first calibration
stage. We include the systematic error (that our experiments
show it is quadratic) and the sensors alignment in a second
stage of the calibration: at this point, we exploit the plane-to-
plane constraints between color and depth data to align the
two sensor and to infer the systematic error inside a non-
linear optimization framework.
Our main contribution are:

e An easy-to-implement calibration protocol, that pro-
vides the input data used for both the undistortion map
and alignment estimation processes.

o A spatial/parametric undistortion map that models in a
compact and efficient way the lens distortion effect in
Kinect-like depth sensors.

e A novel optimization framework that aims to estimate
the camera-depth sensor alignment along with a para-
metric model that well describes the systematic error of
the depth measurements.

The paper is structured as follows: in Section II we explain
in details how we model the distortion error of the depth
sensor while in Section III we describe an algorithm to
estimate the intrinsic parameters of the depth sensor. Section
V is dedicated to the experiments and the evaluation of the
proposed approach, and Section IV gives an overview on a
real implementation of the algorithm.

A. Related work

Literature is full of calibration methods for fusing color
and depth data, however most of them deal with depth data
generated by 2D/3D laser range finders [1], [2] or time-of-
flight cameras [3]. Such methods are not directly applicable
to Kinect-like devices. In fact, since they are structured-light
based sensors, the nature of the error is different from other
sensor types, so also the introduced error pattern is different.
In one of the first works on the Kinect, Smisek et al. [4]
showed that Kinect devices are affected by a sort of radially
symmetric distortions: this fact was later confirmed in [5],
[6], [7]. In [5], we can find a first attempt to take into account
the distortion during the calibration process. However, as
stated by the authors, their approach is not suitable for large
distances between the camera and the depth sensor. Zhang
et al. [8] realize that the depth value z provided by the depth
sensor of the Kinect was a linear function of the real one z*,
that is z = puz* + 7.

Teichman et al. [6] recently proposed a calibration ap-
proach for Kinect-like devices where it has been observed
that the error introduced by such depth sensors is myopic,
that is, if the depth value increases, the error increases as
well. This is probably the work most related to our approach.
In fact, they estimate the undistortion map by means of a
SLAM framework, in an unsupervised way.
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Fig. 2. (a) Point clouds of a planar surface (a flat wall) for increasing,

known distances. The distortion effect increases for greater distances; (b)
After the application of the proposed undistortion map to the point clouds
in (a), the depth distortion becomes negligible.

B. Notations

We use non-bold characters x to represent scalars, bold
lower case letters x to represent vectors with no distinction
between cartesian coordinates and homogeneous coordinates.
Bold upper case letters M represent matrices. Note that
matrices can be seen as ordered lists of vectors, one for
each column. A coordinate frame belonging to a body B
is denoted by 5. The coordinates of a point p with respect
to the coordinate frame F are denoted by “p. 5T denotes
the homogeneous transformation matrix from A to B, such
that “p = 5T%p.

II. DEPTH ERROR MODEL
A. State of the Art

Kinect-like depth sensors intrinsic parameters has been
termed myopic [6], that means that an incorrect parameter
set results in an absolute error that increases with distance.
We can easily see this property analyzing the data coming
from one of these depth sensor when positioned in front of
a flat wall. As we can see in Fig. 2(a), while at close ranges
the data is highly reliable, for greater distances the distortion
strongly affect the depth accuracy.

To model the effects of this distortion, in some recent
works [5], [6], [7] authors try to estimate depth correction
functions in a per-pixel basis. That is, given a pixel (u,v) €
Q C Z? and the corresponding depth value d, the real depth
d* is estimated as

d* = fu.0(d). (1)

This function is estimated using a camera as a reference
[51, [7] or running a SLAM system while inferring the
function parameters [6]. In the former two methods, the
authors assume that the camera and the depth sensor are
extrinsically calibrated (i.e., they assume to know the rigid
body transformation that relates the two sensors) and they
use the plane defined by the checkerboard as a ground truth
for the depth sensor. Actually, if the extrinsic calibration is
correct, the depth sensor’s intrinsics can be easily estimated
but, as introduced above (e.g., see Fig. 1(a)), this assumption
is partially violated also when using a factory calibrated



device as the Kinect. On the other hand, if no extrinsic
calibration is provided, as in the case of general camera-
depth sensor couples, these methods cannot be applied.

B. Our Proposal

We propose to separate the error into two different parts
and treat them separately. We call distortion the error re-
sponsible of the local alteration of an object shape (e.g., see
Fig. 2(a)) and global error the systematic wrong estimation
of the average depth. We substantially express each f(-) in
(1) as a composition of two functions: u(-) that takes into
account the local distortion and g(-) that instead makes a
global correction of the depth values. That is, the real depth
d* is estimated as

d* = f(u,’u) (d) = (g o u) (u,v)(d) (2)

In this context, we define an undistortion map U as the set
of all possible u(-). This separation allows us to estimate
the intrinsic parameters in two steps. We can first compute
the undistortion map without worrying about the real depth
and, at a later stage, estimate the systematic error along the
z-axis.

C. Conventions

An image pixel (u,v) along with its depth value d repre-
sent the projection of an unique 3D scene point (x,y,2)".
In other words, the same scene point p = (z,%,2)T can be
represented also as (u,v,d), i.e.

(u,v,d) & (z,y,2)" =p.

Therefore, in the following we will use indifferently any of
the two forms. Considering for example Eq. (1), we can
rewrite it in terms of a point p = (z,y, )", obtaining

I1II. CALIBRATION APPROACH

For a given sensor couple, there is a close relationship
between intrinsic and extrinsic calibration parameters. A first
solution could be to estimate everything together, inside an
unique optimization process. That is, starting from an initial
guess, one can try to find the parameters that minimize
a suitable error function. However, even if theoretically
plausible, due to the huge number of parameters (e.g. 32,000
in [6]) the problem is really hard to solve.

Starting from the considerations we made in Section II,
we decided to follow a different approach. Exploiting the
continuity of the error, we can assume that given two close
3D points p and q along the same direction, i.e g = (1+¢€)p
with € ~ 0,

q" = f(q) = (1 + €)p) ~ (1 +e)f(p) = (1 + e)p™.

where f(-) has been defined in Eq. 2. In particular, when
dealing with the distortion error

q=nu(q) =~ (1+ e)u(p).

It means that, if we know how to undistort a point p, we
can undistort close points with a good approximation. This
assumption is the basis of our algorithm to estimate the
undistortion map U.

A. Undistortion Map Estimation

A depth sensor D provides a discrete representation of
the scene by means of a point cloud C. Supposing that the
sensor is pointing a planar surface (e.g., a wall), we define
P ={p1,p2...pn} C C as the subset of points belonging
to this planar surface. Using standard least squares methods
we can easily fit a plane 7 to the given subset P and therefore
define D (p) as the distance from a point p to the plane .

The input of the algorithm is a list of point clouds taken
when the sensor is pointing a planar surface at different
distances. For each cloud, we extract the distance from the
fitted plane, we sort the list for increasing distances, then we
process the ordered list {Pg, P ... Py} as follows.
Firstly, initialize Uy with a set of identity functions. That is,
U(y,0)(d) =d, V (u,v) € Q.

Then, fori =1 — M:

1) Undistort P,; with the previously estimated undistor-
tion map U;_1.

2) Fit a new plane m; to the undistorted data f’i =
{ulp) I peP;}.

3) Compute the distances D, (u(p)) of all points from
the plane.

4) For each point p € P; that meets the condition
D, (u(p)) < K (K is a threshold we use to reject
outliers):

a) Project p on 7; along its direction, obtaining a
new point p’ (in this way (u,v) = (u, v)’).
b) Add the pair (d,d’) to the sample set S, ., of
(u,v).
c) Update the estimation of the parameters of
U(y,v) (d) fitting a new curve to the whole sample
set S(u’v).
At the end we have the undistortion map U = U, that better
corrects the input data.

B. Global Error Correction

In order to estimate the global, systematic error, we need
to introduce some constraints on the input data. A common
way in this case is to use some measurements taken with
the camera C. However, as stated in section II, we cannot
keep the extrinsic calibration of the two sensors (i.e., the
transformation between them) separated from the intrinsic
calibration of the depth sensor (i.e., the global error). The
idea here is to find a non-optimal initial guess and then
optimize the intrinsic and the extrinsic parameters together.
We use the same input dataset we used during the undistor-
tion map estimation (Sec. III-A), corrected using U. We also
assume that in the planar surface we frame with the sensor, a
checkerboard is also present (e.g., a checkerboard attached to
a wall). Using an already calibrated camera, we can estimate
the pose of the checkerboard B in its field of view, while
using a (partially calibrated) depth sensor it is possible to fit



planes to the input (planar) point clouds. We can therefore
use the Unnikrishnan method [9] to estimate an initial guess
for the transformation 2T between the two sensor frames.
We can also estimate an initial guess for the error correction
function g by using all the points in P and their line-of-sight
projection [10] on the planes defined by the checkerboards
as sample pairs for the curve fitting procedure.

We can now estimate the correct transformation ET* and
the correct global function g* as:

(€T*,g") = arg min e(¢'T, g) 3)
cT.g
where e(+) is the error function we want to minimize and
that takes into account both the re-projection error of the
checkerboard corners and the alignment between the planes
in the images and the planes in the depth maps. We use T
and g as an initial guess for the optimization.

C. Optimization Function

Given a checkerboard B framed by the camera and its
corner set B = {8b;, Bb,...Bbn}, we can define:

o IB; = {Zby;,Tbs;...Tbn;} as the corner set in pixel
coordinates (i.e., the 2D image points) in the image
i, 1=0...M .

o B, as the corner set of the checkerboard (i.e., the 3D
scene points) extracted from image corners ZB; (using
one of the PnP methods).

o PP, as the 3D point set belonging to the checkerboard
plane extracted from the ™ undistorted depth map.

We also define repr(-) as the re-projection function that

returns the pixel coordinates of a scene point p.
We define our error function as

M N
erepr = ) D [[repr(HT 7 Pby,) — Tby 1%,
=0 j=1
where ||-|| is the L2-norm. At each step s of the optimization,

for each image ¢, we can compute Dbji as following:

1) Correct the depth points using the current estimation
gs(-) of g(), i.e. PP; = g,(PP;).

2) Fit a plane P#; to the corrected points.

3) Transform P#; in the camera coordinates using the
current estimation $, T of §T.

Note that, if the two sensors are perfectly calibrated,
C#; = ST 1P#; coincides with the plane €7; defined
by the checkerboard in the camera frame.

4) Project the corners B; (blue points in in Fig. 3) onto
the plane ¢#; extracted using the depth sensor (green
points in in Fig. 3). We just need to intersect the optical
ray of the center c; of the checkerboard CB, with the
plane €#; (red points in in Fig. 3) and set the pose of
the corners Dbji imposing the dimension constraints,
as depicted in Fig. 3.

The minimization of e..,, converges to accurate results in
presence of good initial guesses %T and g, while usually
converges to wrong local minima with initial guesses far

Fig. 3. Overview of the projection procedure of the checkerboard corners
onto the plane extracted using the depth sensor.
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Fig. 4. Signed distortion errors d — d relative to 3 different pixels (u, v).
They are clearly non-linear.

from the optimal solution. For this reason we add a penalty
factor

st 1o 1%
epen = [ exo [+
i=0 j=1

to take into account the distance between the two planes €7;
and °7;. Eq. (3) therefore becomes

TﬁlDb.ii - CbJ’z‘H
1By, |

(?T*,g*) = arg g}lin [epen(?T»g) 'erepr(?Tag)} .
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D. Real Data Analysis

We conducted some experiments to estimate the function
types that better fit to the two above-mentioned errors. To
have an idea of how the distortion evolved with the depth,
we positioned a Kinect in front of a wall and fit a plane to
the depth data. Given a pixel (u,v) we compared its depth
value d with the value d, the pixel should have had to lie
on the fitted plane. We repeated this procedure at increasing
distances from the wall. As we can see in Fig. 4, the error
d — d; is non-linear and well fitted by a second degree
polynomial.

We then estimated the evolution of the global error for
the Kinect sensor. We positioned a Kinect in front of a
big checkerboard and extracted the relative plane (function
solvePnP () from http://opencv.org). Using the
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Fig. 5. Signed global error d— dgt and correspondent fitted second degree
polynomial.

previously computed undistortion map, we undistorted the
depth data and computed, for each pixel, the difference
between its value d and the one it should have to lie on
the checkerboard plane dg:. We then repeated the procedure
at different distances. The results are visible in Fig. 5. As
we can see, also in this case the error is not linear in d.

IV. IMPLEMENTATION DETAILS

We distribute the source code of our calibration system!

implemented inside the well known robotic framework
ROS?. Our software takes less than an hour to complete
the calibration in a modern quad-core PC when dealing
with a dataset of nearly 400 image-point cloud pairs at half
resolution.
Using the provided software, the user is asked to collect
a dataset of point cloud-image pairs of the same scene
containing one or more checkerboards. Obviously, with
bigger planar surface containing the checkerboard, it is
possible to obtain a more accurate undistortion map.
Moreover, to be able to estimate checkerboard surfaces,
the software needs a rough initial transformation between
the frames of the two sensors (e.g. for Kinect-like devices
the identity matrix is a very good initial guess). The
transformation can be set in a configuration file or estimated
with the help of a simple tool that asks the user to select
some (less than 10) planes that contains the checkerboards.
During the undistortion map estimation, the checkerboard
is only used as a marker to discriminate the calibration
plane in the scene. The software keeps trace of the z-
distance between the center of the checkerboard and its
projection on the fitted plane. These values let the program
to incrementally model the systematic error and therefore
have a better estimation of the location of the calibration
plane with respect to the depth sensor. At this point the
calibration procedure analyzes all the pairs and estimates
both the intrinsic parameters of the depth sensor and the
transformation between the two sensors.

Even if the proposed global error model works well in
many circumstances, it is based on a wrong assumption: the
fitted planes are parallel to the real planes. In fact, as depicted
in Fig. 6, this assumption is wrong. Therefore, instead of

Ihttps://github.com/iaslab-unipd/rgbd_calibration
2http://ros.org
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Fig. 7. Planarity error. The plot shows both the mean error and the its
standard deviation. As we can see also in Fig. 2(b) the planarity of the cloud
is greatly improved.

using a single second degree polynomial to correct the global
error, we estimate 4 polynomials, one for each corner of the
depth map. This operation enables us to model non-parallel
fitted planes and greatly improves our calibration results.

V. EXPERIMENTAL EVALUATION

We evaluate our calibration procedure with a test set con-
sisting of more than 100 image-depth map pairs. We mounted
an Asus Xtion Pro on a mobile robot and collected the
data while moving towards a flat wall with a checkerboard
attached.

A. Quantitative Results

We firstly evaluated the planarity of the original depth
maps compared with the planarity of the same cloud undis-
torted with the computed undistortion map. We fit a plane
7 to the clouds and computed both the mean of the line-
of-sight error [10] of the points and its variance. As visible
in Fig. 7, using the estimated undistortion map planarity is
substantially improved.

We then estimated the results of the whole calibration
procedure by computing the planarity error with respect to
the plane defined by the checkerboard, namely calibration
error. We extracted the plane by means of the above-
mentioned solvePnP () function and transformed it to the
depth sensor reference frame. We computed the error of
the original depth map, the “partially” undistorted one (no
global error correction applied) and the fully undistorted one.
As expected (Fig. 8), the original clouds and the partially
undistorted ones show roughly the same error distribution,
while the fully undistorted clouds are definitely much more
reliable.



e}
g o Original data o o
— J . . ?
5 0.2 |+ After local undistortion 99+o*9+
;
g = After global undistortion o0 o
g ?
3 08.20% .
= 017 o 5%06@@6 ¢ PR
2 %6% ° x x Xk
= 020 00, Xxxxxxxx x
O h XXX KX XX XX
() e / } } } } } }
1.5 2 2.5 3 3.5 4 4.5 5
z [m]
Fig. 8. Calibration error.Absolute error with respect to the ground truth

dg¢ after different stages of the algorithm.

TABLE I
RESULTING CALIBRATION PARAMETERS.

Translation [m] | Rotation

x: 0.0222252 x: -0.00337542

y: -0.00159009 | y: 0.00425487

z: 0.00780007 z: 0.00190883
w: 0.999983

For what concerns the extrinsic parameters, the resulting
values (Tab. I) are close to the factory provided ones.

B. Qualitative Results

We cannot evaluate the estimated undistortion map di-
rectly, we can instead show (Fig. 9) that the one estimated
with our algorithm is comparable with those visible in other
works, especially [4], [6], [7]. The maps visible in Fig. 9
are obtaining by applying the local undistortion function to
a synthetic point cloud at a defined distance and printing the
resulting depth values with a color scale from deep red to
deep blue.

The reported undistortion map is obtained by discretizing
the depth images into bins of 8 x 8 pixels. We successfully
tested the algorithm even with a full resolution map without
any significant improvement in performances.
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Fig. 9. Undistortion map applied to synthetic flat point clouds. Note that
the color scale is different for each map.

We also evaluated the calibration procedure in real world
scenarios. Fig. 1(a) shows that the estimated calibration
outperforms the factory one in terms of point cloud-image
alignment. Moreover, as visible in both Fig. 2(b) and 1(b),
the scene geometry is improved.

VI. CONCLUSIONS

In this paper we presented a novel method to calibrate
both the intrinsic and the extrinsic parameters of a Kinect-
like RGBD sensor. The proposed calibration procedure only
requires to collect data in a minimally structured environment
(e.g., a wall with attached a checkerboard). We propose to
model the depth sensor error by means of two different
components, a distortion error and a global, systematic error.
The distortion error is modeled using a per-pixel parametric
undistortion map, estimated in the first stage of the algorithm.
The camera-depth sensor alignment along with the depth
systematic error are then estimated in the second stage of
the algorithm, inside a robust optimization framework [11].
Reported results show the possibility to improve the accuracy
of a low cost RGBD sensor with very simple procedure. As
a future work we plan to compare our algorithm with other
recent approaches (e.g., [6]).
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