
Scalable Dense Large-Scale Mapping and Navigation

Alberto Pretto, Stefano Soatto and Emanuele Menegatti

Abstract— This paper describes a scalable dense 3D recon-
struction and navigation system suitable for real-time operation.
The system represents the environment as the back-projection
of a Delaunay triangulation of the omnidirectional image,
estimated at each instant from two adjacent views. The cost
being minimized (i.e., the reprojection error) is photometric
rather than geometric, as in the majority of feature-based
reconstruction and navigation systems. While temporal inte-
gration would enable more accurate reconstruction, this would
carry the computational burden of handling topological changes
due to occlusion phenomena. We successfully tested our system
in a challenging urban scenario along a large loop using an
omnidirectional camera mounted on the roof of a car.

I. INTRODUCTION

Our goal is to build photometric and geometric models
of the environment that can be used for navigation and
for object-level map building. We are interested in models
that have generative capabilities, so they can be used to
synthesize images that can then be compared with object
descriptors for localization and recognition. Therefore, rather
than the ubiquitous “cloud of points” [10], [4], [5] our
model consists of dense surfaces that support a radiance
function. However, we also want our models to be usable
for navigation, planning, obstacle avoidance and other real-
time interaction tasks, so it is paramount that the model be
inferred efficiently and in real-time.

We choose to represent the world surrounding the robot in-
stantaneously as the back-projection of a Delaunay triangula-
tion of the omnidirectional image. The nodes are salient fea-
ture points detected in one image, and the three-dimensional
position of such nodes is computed instantaneously from
two adjacent images by minimizing the reprojection error.
Because of the large rectification artifacts of omnidirectional
sensors, we choose to select point features in the original (un-
rectified) image, where the triangulation is computed. As a
result, the boundaries of the piecewise planar segments of the
surface that is reconstructed are not in general straight lines,
so the surface is not a proper triangulated surface. However,
we find that the errors resulting in the approximation of this
surface with a triangulated one more than compensate from
the sampling inhomogeneities that follow feature selection
on the rectified image.

Our optimization approach is based on an efficient second-
order scheme called ESM [14]: the topological relationships
between the subdivision’s vertices are exploited to iteratively

Pretto and Menegatti are with the University of Padova, Dep. of In-
formation Engineering (DEI), via Gradenigo 6/B, 35131 Padova, Italy
alberto.pretto@dei.unipd.it

Soatto is with the Computer Science Department, University of California
(UCLA), Los Angeles - CA, USA

Fig. 1. An example of omnidirectional image with superimposed the
Delaunay subdivision (blue segments) anchored on salient points; red
segment show the inter-frame displacement of these vertices. We use a mask
to suppress the car’s roof and the area outside the omnidirectional mirror.

divide the optimization in subproblems where only a subset
of “independent“ vertices are actively processed. This strat-
egy significantly improves the efficiency of the minimization
procedure.

A. Related Work

Current visual SLAM (simultaneous localization and map-
ping) systems use perspective [10], [4], [5], [6], [21], [8],
stereo [11], [7] or panoramic cameras [1], [15], looking for
points [10], [4], lines [6], [8] or planar features [21] as visual
landmarks. Most of them use stochastic filtering approaches
such as Extended Kalman Filters (EKFs), Rao-Blackwellized
Particle Filters [16] or graph-based optimization [9].
Jin et al. [10] and Davison et al. [4] proposed a feature-based
SLAM approach using a single perspective camera and an
EKF, where a 3D map of the features is built using the bear-
ing only measurements from a monocular camera. A similar
approach, but based on the FastSLAM framework, was pre-
sented in [5]. In [11] a high-resolution digital elevation map
is built from a sequence of stereo image pairs where interest
points are detected and matched between consecutive frames.
A visual motion estimation algorithm is used to predict the
movements, an EKF is used to estimate both the position
parameters and the map. The system presented in [1] uses
SIFT [12] to compute the similarity between omnidirectional
images. Links between robot poses are established based on
odometry and image similarity, then a relaxation algorithm

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 49-56

Fig. 2. A dense reconstruction of the surrounding environment obtained
with the proposed method. The previous image used for this reconstruction
is shown in Fig. 8(a).

is used to generate the map. In [7] a dense metric map of 3D
point landmarks for large cyclic environments are built using
a Rao-Blackwellised Particle Filter, where SIFT features
are extracted from stereo vision and motion estimates are
based on sparse optical flow. Eade et al. [6] presents a
monocular visual SLAM approach using line features, with
an efficient algorithm for selecting such landmarks. Higher
level landmarks are exploited in [21], where 3D camera
displacement and scene structure are computed directly from
image intensity discrepancies using an efficient second-order
optimization procedure for tracking planar patches. Nistér
et al. [17] presented a robust visual odometry system (i.e.,
the Visual SLAM subproblem of estimating the robot’s ego-
motion using vision) based on features tracking and on the
five-point algorithm, able to estimate the motion of a stereo
camera or a perspective camera in large trajectory. A visual-
odometry approach using omnidirectional vision is presented
in [19], where the camera trajectory is estimated switching
between two different trackers, one homography-based and
one appearance-based, according to the distribution of the
image points. Recently, Klein et al. [8] proposed an effective
Visual SLAM approach based on edgelets tracking that
exploits a key-frame-based re-localization method in order
to recover form tracking failures. In [15], Micusik et al.
proposed a framework for creating 3D maps in an urban sce-
nario using a panoramic camera modeled as a quadrangular
prismatic camera. This approach estimates camera pose by
exploiting the epipolar geometry constraints, while a dense
3D map of the environment is built using a superpixel-based
multi-view stero method. Cornelis et al. [2] integrate in a
real-time 3D reconstruction framework an object recognition
module in order to deals with the dynamic nature of an urban
scenario.

II. DELAUNAY-BASED TRIANGLE MESH
SURFACE

Triangulated meshes are commonplace in geometric sur-
face modeling because of their approximation properties as

well as the availability of efficient algorithms to perform
“geometry processing” operations such as smoothing, inter-
polation and sub-division. Given a piecewise smooth surface
S ⊂ R3 that represents the scene, we can approximate it with
a triangular mesh M(S) consisting of a pair (K,V) where
K is a simplicial complex that determines the topology of
the mesh and V is a set of n 3D vertices V = {V1, . . . ,Vn}
that defines the shape in R3.
Assuming that the surface S is completely visible from the
camera (or equivalently that there are no occlusions between
two adjacent time instants), every 3D vertex Vi is projected
onto the image plane at location vi = Π̊(Vi), i = {1, . . . , n},
with Π̊ a general projection function. Let us denote the 3D
vertex by Vi and its neighbors with indices {ji,1, . . . , ji,ni

}:
under the given assumptions, the topology of the projected
vertices remains the same, i.e. vi = Π̊(Vi) has as neighbors
the projections of the 3D vertices defined by the same indices
{ji,1, . . . , ji,ni}. Moreover, 3D points that lie in a facet
defined by 3 vertices, will be projected in a triangle defined
by the 2D projections of these 3 vertices.

To construct the mesh, we first select a number n of

Fig. 3. An example of Delaunay triangulation: red circles are the subdi-
vision’s vertices, blue circles the sample points used in the optimization.

salient point features and associate each of them to a vertex
{v1, . . . , vn}. In our implementation we have chosen an
(approximately) affine co-variant detector [20], although a
number of other detectors could be used [22]. In order to
maintain a spatial distribution of vertices that is as close
as possible to uniform, we partition the images into regular
tiles and select a minimum number of point within each tile.
Given the set {v1, . . . , vn}, we then define a subdivision of
the (un-rectified) image plane into into simplices (triangles
in the planar case) each representing the projection of a
spatial surface element. We use a Delaunay triangulation
technique, that provides a subdivision that maximizes the
minimum angle between any two edges in the resulting
graph. This avoids “skinny triangles” artifacts. In Fig. 3
we show an example of Delaunay triangulation, where the
vertices are depicted with red circles, in Fig 1 we show an
omnidirectional image with the extracted features along with
the resulting Delaunay triangulation. Building the Delaunay
subdivision directly in the omnidirectional image (see Fig. 3)
also avoids the discontinuities introduced when unwarping
the omnidirectional image into a 360o panoramic image.
We use an image mask in order to avoid searching features
outside the area where the omnidirectional mirror is imaged
or on in the car’s roof.

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 49-56

In this first step of the algorithm, we extract also a set of
m images sample points {s1, . . . , sm} that lie inside the
triangles (blue circles in Fig. 1), along with the topological
information related to the Delaunay subdivision, i.e. the 3
indices ki,1, ki,2, ki,3, i = 1, . . . ,m, which define the vertices
of the triangles that the samples belong to. These sample
points (possibly, all the image points) will be used in the
optimization procedure in order to match the deformation of
the triangular patches between consecutive frames.

III. SURFACE TRACKING
Camera motion induces a diffeomorphic deformation of

the domain of the image away from occluded regions. This
deformation depends both on the motion of the camera
and on the three-dimensional shape of the scene. Since
for sufficiently small inter-frame motion (sufficiently fast
temporal sampling), occluded regions are small, we neglect
them in constructing an instantaneous estimate of the three-
dimensional layout of the scene. Naturally, this is only
possible in an instantaneous inference scenario: Establishing
correspondence over time would force us to handle occlu-
sions explicitly, with the obvious computational burden that
follows. The only “memory” we enforce is the use of the
best estimate of 3D shape from the previous time instant as
the initialization of the current iterative procedure.
The iterative procedure we employ is a gradient-based
scheme to estimate the position in 3D space of the nodes of
the triangulated mesh, along with camera motion parameters,
by minimizing the norm of the reprojection error. The
reprojection error is the difference between the measured
images and the images generated by the current estimate
of the model. We call It : R2 → R; x 7→ It(x) the
previous image, and similarly It+1(x) the current image).
Their relation, assuming Lambertian reflection and constant
illumination [23], is given by

It+1(w(x)) = It(x), x = π(X), X ∈ S ⊂ R3 (1)

where π(X) is the projection of a point on a visible portion
of the unknown scene S, and w : R2 → R2, restricted to the
co-visible region, is a diffeomorphism [24] given by

w(x) = π
(
gtπ
−1
S (x)

)
. (2)

Here π : R3 → R2 is the projection map that compounds
the effects of a central projection and the deformation map
induced by the omnidirectional mirror, described in the next
section. Here π−1

S is the inverse-projection map, that depends
on the (unknown) 3D geometry of the scene S, which
is the subject of inference, along with gt ∈ SE(3), the
instantaneous motion of the camera. The reprojection error
is simply

φ(gt, S) =

∫
D

(It+1(w(x))− It(x))
2
dx subject to (2)

(3)
for the case of the L2 norm, where D is the domain of
the image. One could use other norms, such as L1, as an
alternative [25]. In the next subsections we examine the two
unknowns gt, S and their structure in more detail.

A. Omnidirectional Camera Model

The projection map π describe above is usually taken to
be a canonical (central) perspective projection, either onto
a plane, or onto an hemisphere. If the points X ∈ S ⊂
R3 are represented in coordinates relative to the camera
reference frame (with the optical center as the origin and
the optical axis aligned with the third coordinate axis), these
are given by x̄ = X/X3 ∈ P2 and x̄ = X/‖X‖ ∈ S2

respectively, where x̄ denotes the homogeneous (projective)
coordinates. In the case of an omnidirectional camera, we
assume that there exists a map Π : D ⊂ S2 → R2 from
the image domain, which can be modeled as a subset of the
omnidirectional sphere, to the plane. This map is invertible,
and can be estimated and compensated for as part of a
calibration procedure, as described in [18].

More in general, when the coordinatization of the world
S is relative to a reference other than the camera reference
frame, we describe the transformation between the world
and the camera frame with g ∈ SE(3), represented in
homogeneous coordinates as a 4× 4 matrix G as customary
[13], with rotation component R ∈ SO(3) and translation
T ∈ R3. In the next section we describe the constraints
imposed on the motion parameters by the vehicle kinematics.

B. ICR-based Motion Model

Camera
Frame

ICR

rIC
R

Vehicle
Frame

y

x x

y

Fig. 4. Ackermann steering geometry.

In this work, we assume that the vehicle moves on a planar
ground plane. In case of planar motion, the car’s kinematics
can be described with the Ackermann steering geometry. In
this model, the instantaneous zero-motion lines of each wheel
meets at a single point, the Instantaneous Center of Rotation
(ICR) (Fig. 4). We can approximate this model assuming that
the vehicle rotates around a fixed ICR for a discrete time (the
shutter interval of the camera). In this way, the motion is
composed by a discrete number of rotations around different
ICRs.
Let us define the position of the ICR in the y-axis in the
car’s reference frame as rICR (the radius of curvature,

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 49-56

see Fig. 4). Since scale is unobservable with bearing-only
measurements, we normalize it using the norm of translation
as the unit, which we will later re-scale using vehicle’s speed
measurements. By doing so, we parametrize the rigid-body
motion with only one parameter, the radius rICR. We can
therefore restrict the instantaneous motion of the camera gt
to be represented in homogeneous coordinates by the 4× 4
matrix

G〈rICR〉 =

cos(α) −sin(α) 0 cos

(
α
2

)
sin(α) cos(α) 0 sin

(
α
2

)
0 0 1 0
0 0 0 1

 (4)

where α = 2 · asin
(

1
2·rICR

)
. Finally, we indicate the rigid-

body transformation from the camera reference frame to the
vehicle’s with BV C ∈ SE(3) (see Fig. 4).

C. Tracker Parameterization

As we have seen, camera motion is described by the
radius rICR, and structure is described by the vertices of
the Delaunay subdivision along with their depth. Let s′i ∈ D
be a sample point and let v′ki,1 , v

′
ki,2

, v′ki,3 ∈ S2 be the three
vertices that define the facet in which the sample lies. If
the vertices’ depths λki,1 , λki,2 , λki,3 are known, the depth
of s′i can be computed observing that the determinant of the
following matrix must be equal to zero:∣∣∣∣∣∣∣∣

s′i(x) s′i(y) s′i(z) 1/λ(s′i)
v′ki,1(x) v′ki,1(y) v′ki,1(z) 1/λki,1
v′ki,2(x) v′ki,2(y) v′ki,2(z) 1/λki,2
v′ki,3(x) v′ki,3(y) v′ki,3(z) 1/λki,3

∣∣∣∣∣∣∣∣ = 0 (5)

The depth λ(s′i) is then given by the following formula:

λ(s′i) =
|M4|

s′i(x) |M1| − s′i(y) |M2| + s′i(z)|M3|
(6)

where |Mi|, i = 1, . . . , 4 are the minors of the matrix defined
in Eq. 5 obtained removing the first row and the i − th
column.
In our optimization procedure, we use as motion parameter
ρ ∈ R the inverse of the radius rICR, ρ , 1/rICR. This
parametrization improves the stability of the system, enabling
moreover to represent explicitly a pure translational motion
(setting ρ = 0 it means rICR →∞). The update rule for the
motion parameter is given by:

ρ̂← ρ̂+ ρ̃ (7)

where ρ̂ represents the estimate and ρ̃ an increment to be
found.
We represent the structure parameters with the vertices’
inverse depths ζi , 1/λi, i = {1, . . . , n}. In order to
enforce the cheirality constraint, similarly to [21], we also
parameterize ζi as ζi = ζi(ξ) = eξi , with ξi ∈ R. This
provides the update rule:

ζ̂i ← ζ̂i · ζi(ξ̃) = ζ̂i · eξ̃i (8)

where as usual ζ̂i represents the estimate and ξ̃ an increment.

D. Estimating the Range Map

We refer the world frame to the camera frame at the
time instant t when the previous image It was captured.
In this section we make the reprojection error (2) explicit
with respect to the triangular subdivision represented by the
n vertices {v∗1, . . . , v∗n}. The image itself is quantized into a
discrete set of m points {s∗1, . . . , s∗m}. For each vertex v∗i in
It, the corresponding vertex in It+1 is given by the following
sequence of transformations:

v∗i
Π−1

−−−→ v∗
′

i

λ∗i−→ V∗i
BV C−−−→ V∗,cari → (9)

G〈rICR〉−−−−−→ Vcari
B−1
V C−−−→ Vi

λ−1
i−−→ v

′

i
Π−→ vi

The transformation Π−1 maps a vertex from the (unwarped)
image plane onto the corresponding normalized coordinate
on the unit sphere; multiplication by λ yields the 3D coordi-
nates, then transformed to the vehicle’s reference frame by
BV C . This reference frame moves with a rigid-body motion
(Eq. 4). The chain is then reversed to yield the projection of
the original point onto the new image plane. For the sample
points {s∗1, . . . , s∗m}, the sequence of transformations is the
same with the depth computed using Eq. 6. As expected from
(2), the projection of a vertex from the previous image to the
current image depends on both depth, and camera motion.
The projection of a sample point depends on the motion
parameter and the depths of the three vertices that define
the triangle that it belongs to. Given the parametrization
presented in Sec. III-C, our optimization procedure aims to
find the parameters ρ ∈ R and ξ ∈ Rn, ξ = [ξ1, . . . , ξn]

′ that
minimize:

φ(ρ, ξ) =
1

2

n∑
i=1

[It+1(vi)− It(v∗i)]
2

+ (10)

+
1

2

m∑
j=1

[
It+1(sj)− It(s∗j)

]2
where, remembering Eq. 7,8 and 9:

vi = Π

{
λ−1
i B−1

V CG
〈

1

ρ̂+ ρ̃

〉
BV C

[
1

ζ̂iζi(ξ̃)
Π−1(v∗i)

]}
(11)

The computation of sj is slightly more complex, due to the
fact that its depth depends on the parameters ξkj,1 , ξkj,2 , ξkj,3 ,
where kj,1, kj,2, kj,3, j = 1, . . . ,m, that represent the ver-
tices of the triangle bounding the point. Setting θ = (ρ, ξ)
and defining d(θ) as the objective function to minimize,
during every update step we seek the minimizer

θ0 = argminθ
1

2
‖ d(θ) ‖ (12)

which can be approximated up to second-order efficiently
following [14]:

d(θ) w d(0) +
1

2
(J(θ) + J(0)) θ (13)

where J(θ) is the Jacobian of d(θ) computed in θ. Under
certain conditions, J(θ)θ can be calculated without knowing

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 49-56

the value of θ [14]. Setting d(θ) = 0, we can compute θ0

as:

θ0 = −
((

JIt + JIt+1

2

)
J̆(0)

)†
= −̊J

†
(14)

where † denotes the pseudoinverse, JIt and JIt+1 are the
Jacobians computed in the images and J̆(0) is the Jacobian of
the sequence of transformations defined in Eq. 9, computed
in 0 using the chain rule. The Jacobian JIt can be calculated
only once for every previous image.
The standard optimization procedure is as follow:

1) Initialize Eq. 10, in our case we initialize the system
with ρ̂ = 0 and ζ̂i = [0, . . . , 0]

′.
2) Calculate the Jacobians JIt , JIt+1

and J̆(0) and find
θ0 by solving Eq. 14.

3) Update ρ̂ and ζ̂i as shown in Eq. 7 and Eq. 8.
4) End when the increment is smaller than a threshold,

otherwise go to 2).

E. Implementation

1 2

3

5
4

8

6
7

9

10

(a)

1 2

3

5
4

8

6
7

9

10

(b)
1 2

3

5
4

8

6
7

9

10

(c)

Fig. 5. Example of three iteration of the proposed optimization technique.
The topology of the Delaunay triangulation is exploited to iteratively divide
the optimization into smaller subproblems: in the iteration defined by (a)
only vertices 3,4,7,9 are taken into account in the optimization; in (b) only
vertices 1,6,8 and in (c) only 2,5,10. In three consecutive iterations, all the
10 vertices are chosen at least once.

In our system we do not solve the full optimization of
Sec. III-D in one go. Instead, we iteratively solve for each
triangular surface, enabling a more efficient computation of
the pseudoinverse defined in Eq. 14. For each iteration, we
only consider a set of “independent” vertices, keeping the
rest of the structure fixed. The term ”independent” refers
to the fact that these vertices are directly connected with
vertices that are kept fixed in that iteration. An example
of this procedure is shown in Fig. 5. Given a Delaunay
triangulation, in the first iteration (Fig. 5(a)) we only update
vertices 3,4,7,9 (the “active“ vertices) while keeping the
others fixed (”inactive”). In the second and third iterations
(Fig. 5(b),(c)), the set of “active“ vertices changes. After 3
iterations, all 10 vertices have been active at least once.

In order to effectively select vertices during the iterations,
we sort the vertices in a priority queue; vertices that are not
“active” in a given iteration have their priority upped for the
next iterations.
The complexity of each iteration (i.e., the number of parame-
ters) is on average 1/4 of the original size of the full problem,
which causes a considerable speedup since the calculation of
the pseudoinverse of Eq. 14 has at least quadratic complexity.

A results of the proposed tracking procedure in a om-
nidirectional image is shown in Fig. 1, where Delaunay
subdivision is depicted with blue segments and tracked
vertices are depicted with red segments.

1) Efficient Pseudoinverse Computation: From Eq. 14, we
need to compute the usual Moore-Penrose pseudoinverse :

J̊
†

= (̊J
ᵀ
· J̊)−1 · J̊

ᵀ
(15)

where J̊ ∈ R(n+m)×(n+1), with n the number of vertices
and m the number of samples, is the Jacobian of the
whole system. In our implementation, the Jacobian J̊ with
respect to the “active” set of parameters is smaller, i.e.
J̊ ∈ R(n̄+m)×(n̄+1), with n̄ the number of “active“ vertices.
Usually n/n̄ ≈ 4. Within each iteration, only sample points
within an active element are updated, so the Jacobian is
sparse, as only two elements per row of J̊ are non-zero.
Thus J̊

ᵀ
· J̊ can be computed in linear time. This results in a

diagonal matrix with the elements of the first row and first
column not equal to zero. Using Gauss-Jordan elimination
with pivoting in order to improve the numerical stability, one
can compute the inverse of this matrix in O(n2). The last
matrix multiplication in Eq. 15, thanks to the sparse nature
of the Jacobian J̊, also has quadratic complexity.

2) Coarse-to-fine Optimization Strategy: In order to cope
with large displacements between consecutive frames, we
adopt a multi-scale strategy running the optimization in an
l-levels Gaussian pyramid representation of the previous
and the current images, and using the estimated parameters
as initial guess for the lower level.

As we have already pointed out, we do not establish
correspondence across more than 2 frames, as this would
significantly increase computational complexity, although of
course this would be beneficial in terms of increasing the
effective baseline and therefore the robustness and accuracy
of the motion estimates, and therefore of the structure
estimates. The benefit of an instantaneous representation is
that it results in an optimization that is easily scalable and
can be implemented in real-time.

IV. EXPERIMENTAL RESULTS

We tested our system using a car equipped with an om-
nidirectional camera installed on the vehicle’s roof (Fig. 6).
We collect data moving at 30-40 Km/h in a 1300 meters loop
inside a challenging urban scenario (Fig. 7 (a)). The omni-
directional camera is composed by an 1032×778 Firewire-
b camera and a hyperbolic mirror, and it was calibrated
using the OCamCalib Matlab toolbox [18]. We collected a
sequence of 2000 images with related timestamps at a frame

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 49-56

(a) (b)

Fig. 7. In (a) a satellite image of the urban segment where the experiments were performed [source: Google Maps]. A light blue curve shows the
1300-meters path. In (b) the estimated path is shown along with the estimated 3D positions of the mesh’s vertices.

Fig. 6. The vehicle used in the experiments equipped with the omnidirec-
tional installed on the roof (in the blue circle).

rate of 10 Hz; moreover, we collected also the vehicle speed,
using the OBD-II (On-Board Diagnostics) interface, with a
1 Hz frequency.

A. Ego-Motion Estimation

We infer the global car ego-motion composing the single
rigid-body motions estimated between every two consecutive
frames with the proposed tracking framework, and recover
the scale factor using the vehicle’s speed. In Fig. 7 (b)
we show the estimated ego-motion for the followed path
(depicted in light blue in the satellite image of Fig. 7 (a)).
In Fig. 7 (b) we also show the estimated 3D positions of the
mesh’s vertices.
The trajectory is well estimated with a moderate drift, despite
the dataset proposed many challenging situations, among
which:
• Very low frame rate (a frame rate of 10 Hz implies a

displacement greater than 1 meter between consecutive
frames at 40 Km/h);

• Large photometric variability due to light-shadow tran-
sitions;

• Large number of images with very sparse textures
(blank walls, open spaces in the upper part of Fig. 7
(a)).

Moreover, part of the overall error in the motion estimation
is due to inaccuracies in the vehicle’s speed: we verify for
example that, after arresting the car, the speed readings from
the OBD-II takes a few seconds to converge to a reading of
0.

B. Dense 3D Scene Reconstruction

(a) (b)

(c) (d)

Fig. 8. Some images of our dataset. Dense 3D reconstruction results for
these images are reported in Fig. 2 and Fig 9.

We obtain satisfactory results in the dense 3D reconstruc-
tion task: estimated surfaces are usually close to the real ones
(e.g., Fig. 2) also in case of sharp 3D features as corners of

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 49-56

(a)

(b)

(c)

Fig. 9. Some results of the dense 3D reconstruction of the scene obtained
with the proposed method. In (a) and (b) the first-person views of the
reconstructions (the previous images used for these reconstruction are shown
in Fig. 8 (b) and (c), respectively); in (c) a bird’s eye view of a reconstruction
(previous image is shown in Fig. 8(d)).

buildings (e.g., in Fig. 9(b) a corner of a building, in Fig. 9(c)
a bird’s eye view of a crossroads). Previous images for these
reconstruction are shown in Fig. 8.
While the reconstruction is not of photographic render-
ing quality, we emphasize that our goal is to use this
reconstruction in autonomous robots for motion planning,
navigation and obstacle-avoidance purposes, for which high
computational speed and low computational latency are more
important that the overall visual quality of the reconstruction.

C. Efficiency Considerations

The whole approach (features and sample point extraction,
Delaunay subdivision and optimization procedure) take 2
seconds for each frame on a 2 GHz Core 2 Linux-based
Laptop PC. We use on average 500 vertices and 6500 sample
points for every frame. Unfortunately, there is a severe over-
head on the optimization procedure due to the low frame rate:
the large displacement between consecutive frames (usually,
around 1 meter) imposes to use 4 levels in the coarse-
to-fine optimization strategy (see Sec. III-E.2). Moreover,
every level required up to 50 iterations to correctly converge.
In further experiments, we verified that using an higher
frame rate (say 30 Hz), the optimization correctly converges
using only 2 levels and around 20 iterations. Providing the
optimization procedure with a CUDA implementation [3],
the system can be easily run in real time on a standard PC.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we tackle Visual SLAM by estimating a
dense approximation of the instantaneous range map. We
estimate both the motion of the camera and the shape of the
scene, encoded by the position of the vertices of a mesh, by
minimizing the reprojection error, that uses the entirety of the
image, not just the local regions around salient structures. We
enable real-time operation by scheduling the choice of active
nodes at each step of an iterative optimization. Temporal
consistency is only enforced by using the best previous
estimate as initialization for the current optimization, but
otherwise the entire structure of the environment previously
estimated is not used in the calculation of the current
optimization. This has obvious shortcomings in terms of
accuracy and robustness, but it enables us to maintain the
topology of the reconstructed surface simple (by discarding
occlusions) and therefore makes our approach suitable for
real-time operation.
We plan to improve our system enabling surface tracking
over a longer sequence of frames and integrating the pro-
posed technique with a graph-based SLAM framework in
order to achieve loop-closure detection and global optimiza-
tion of the estimated motion and structure. We also plan to
implement the optimization procedure using CUDA libraries.
Moreover, other future works include the generalization
of the piecewise smooth surface assumption, enabling the
system to track multiple surfaces selected on the basis of the
occlusions detected in the images.

REFERENCES

[1] Henrik Andreasson, Tom Duckett, and Achim Lilienthal. Mini-slam:
Minimalistic visual slam in large-scale environments based on a
new interpretation of image similarity. In Proc. of the 2007 IEEE
International Conference on Robotics and Automation (ICRA), 2007.

[2] N. Cornelis, B. Leibe, K. Cornelis, and L. Van Gool. 3d urban scene
modeling integrating recognition and reconstruction. International
Journal of Computer Vision, 78:121 – 141, July 2008.

[3] Nvidia Corporation. Nvidia cuda library home page.
http://www.nvidia.com/object/cuda home new.html.

[4] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier
Stasse. Monoslam: Real-time single camera slam. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(6):1–16, 2007.

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 49-56

[5] E. Eade and T. Drummond. Scalable monocular slam. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Con-
ference on, volume 1, pages 469–476, June 2006.

[6] E. D. Eade and T. W. Drummond. Edge landmarks in monocular slam.
In British Machine Vision Conference (BMVC), volume 1, pages 469–
476, 2006.

[7] R. Elinas, P. Sim and J. Little. slam: Stereo vision slam using the rao-
blackwellised particle filter and a novel mixture proposal distribution.
In Proc. of the 2006 IEEE International Conference on Robotics and
Automation (ICRA), 2006.

[8] Klein G. and D. Murray. Improving the agility of keyframe-based
slam. In In Proc. European Conference on Computer Vision (ECCV,
Marseille), 2008.

[9] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent. In Robotics: Science and Systems (RSS),
Atlanta, GA, USA, 2007.

[10] H. Jin, P. Favaro, and S. Soatto. A semi-direct approach to structure
from motion. The Visual Computer, 19:1–18, 2003.

[11] Il-Kyun Jung and Simon Lacroix. High resolution terrain mapping
using low altitude aerial stereo imagery. In ICCV ’03: Proceedings of
the Ninth IEEE International Conference on Computer Vision, page
946, Washington, DC, USA, 2003. IEEE Computer Society.

[12] David G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):91–110,
2004.

[13] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An Invitation to 3D Vision.
Springer Verlag, 2004.

[14] Ezio Malis. Improving vision-based control using efficient second-
order minimization techniques. In IEEE International Conference on
Robotics and Automation, New Orleans, USA, April 2004.

[15] B. Micusik and J. Kosecka. Piecewise planar city modeling from street
view panoramic sequences. In IEEE conference on Computer Vision
and Pattern Recognition, 2009.

[16] Michael Montemerlo and Sebastian Thrun. FastSLAM: A Scalable
Method for the Simultaneous Localization and Mapping Problem in
Robotics. Springer-Verlag Berlin and Heidelberg GmbH & Co. K,
January 2007.

[17] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Proc.
of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2004.

[18] D. Scaramuzza. Omnidirectional vision: from calibration to robot
motion estimation. PhD Thesis, 2008.

[19] D. Scaramuzza and R. Siegwart. Appearance-guided monocular
omnidirectional visual odometry for outdoor ground vehicles. IEEE
Transactions on Robotics, 28 (2), October 2008.

[20] J. Shi and C. Tomasi. Good features to track. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pages
593–600, 1994.

[21] G. Silveira, E. Malis, and P. Rives. An efficient direct method for
improving visual SLAM. In Proc. of the 2007 IEEE International
Conference on Robotics and Automation (ICRA), pages 4090–4095,
Italy, 2007.

[22] S. Soatto. Towards a mathematical theory of visual information. In
in preparation, 2010.

[23] S. Soatto, A. J. Yezzi, and H. Jin. Tales of shape and radiance in
multiview stereo. In Intl. Conf. on Comp. Vision, pages 974–981,
October 2003.

[24] G. Sundaramoorthi, P. Petersen, V. S. Varadarajan, and S. Soatto. On
the set of images modulo viewpoint and contrast changes. June 2009.

[25] A. Vedaldi, G. Guidi, and S. Soatto. Joint data alignment up to (lossy)
transformations. June 2008.

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 49-56

